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1 Introduction

The generalized method of moments (GMM, Hansen, 1982) is one of the most widely applied
methods in econometrics. In effi cient GMM method, a feasible two-step estimator requires a
consistent estimate of the variance-covariance matrix to weight the moment conditions. In the
estimation of the weight matrix, the moment process is unobservable and has to be approximated
by plugging an initial GMM estimator into the moment function. Windmeijer (2005) points out
that the estimation uncertainty from the plugged-in estimator contributes to the finite-sample
variability of the feasible two-step GMM estimator. He shows that the extra variation generated
by the estimated weight matrix explains much of the difference between the estimated asymptotic
variance and the actual finite sample variance of the GMM estimator. Windmeijer (2005) also
proposes a finite-sample bias-corrected variance formula, which corrects the bias arising from
the estimated effi cient weight matrix instead of the true value. Windmeijer (2005)’s corrected
variance formula has been popularly used in a wide variety of econometric models with high
impact, e.g., Roodman (2009), Brown et al. (2009), Oberholzer-Gee and Strumpf (2007), and
many others.

A fundamental assumption in Windmeijer (2005) is that the moment process is independent
and identically distributed (i.i.d.). For time-series data, which is the focus of our paper, the i.i.d
assumption in Windmeijer (2005) makes his corrected variance formula not applicable. This is
because the optimal weight matrix is no longer a simple average of the estimated moment process.
To extend Windmeijer’s approach to time-series GMM, we need to consider the optimal weighting
matrix as the long-run variance (LRV) of the true moment process, which is usually estimated
by a non-parametric kernel or a series method. Due to the non-parametric nature of the LRV
estimator, in time-series, the two-step GMM estimator is exposed to even higher variation from
the estimated weight matrix. Consequently, the standard asymptotic variance formula without
a finite-sample correction is severely biased, and the associated GMM tests suffer from excessive
size distortions.

In this paper, we develop a finite-sample corrected and heteroskedasticity autocorrelated ro-
bust (HAR) inference for the effi cient GMM method in the time-series setting. By explicitly
considering the non-parametric LRV estimator, our finite-sample corrected variance formula ex-
tends Windmeijer (2005)’s one to none i.i.d data. Since our corrected variance formula is designed
to take into account the extra variation due to the estimation of the LRV, it leads to a more
accurate estimate of the actual finite-sample variance estimator. The key step of our approxi-
mation is that, instead of eliminating the estimation uncertainty of the initial estimator, which
is of small stochastic order of magnitude, we explicitly derive the associated small order terms
and use them to construct the finite-sample corrected variance formula. This paper formally
shows that the finite-sample corrected variance can be consistently estimated. We show that this
consistency does not depend on whether the smoothing parameter in the LRV estimator is fixed
or is increasing with respect to the sample size.

With our finite-sample corrected variance estimator, we construct t and Wald statistics for the
testing problem. To derive the asymptotic distributions of the finite-sample corrected statistics,
we employ an alternative type of asymptotics from the HAR literature, which is called “fixed
smoothing asymptotics.” The fixed smoothing asymptotics holds the smoothing parameter in
the LRV estimator fixed as the sample size increases. In the context of the effi cient two-step
GMM, Sun (2014b) and Hwang and Sun (2017) show that the alternative asymptotics yields
to more accurate approximations, while the conventional normal and chi-square approximations
poorly perform in finite samples. Together with the finite-sample variance corrected formula, the
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limiting distributions derived under the fixed-smoothing asymptotics provides a valid solution to
the effi cient GMM inference problem. The resulting fixed smoothing limiting distributions are
highly non-standard; however, we modify the corrected test statistics and show that they are
asymptotically standard t and F distributed. The standard t and F limits are very appealing
in practical applications because, once practitioners apply the finite-sample corrected variance
formula to construct the test statistics, the standard t and F critical values are readily available
from any standard statistical table. No further simulations or re-sampling methods are needed.

Different approaches to the effi cient GMM inference problem have been proposed in liter-
ature. For example, Hansen et al. (1996) proposes continuously updated GMM methods. A
bootstrap approach for GMM is proposed in Hall and Horowitz (1996), Brown and Newey (2002)
and Lee (2014, 2016). Numerical evidence on the finite sample performance of the asymptotic
and bootstrap tests based on GMM estimators are provided in Bond and Windmeijer (2005).
Newey and Smith (2004) and Anatolyev (2005) analyze higher-order properties for various class
of GMM estimators. Hwang and Sun (2017) and Martínez-Iriarte et al. (2019) propose improved
inferences for GMM methods using fixed smoothing asymptotics. A recent paper by Hwang et
al. (2019) points out a connection between the finite-sample corrected and the misspecification
robust asymptotic variance formula in i.i.d. data. This paper contributes to the literature by
investigating the finite-sample properties of effi cient GMM and its inferential problem in none
i.i.d. time-series data.

This paper is also related to the HAR literature which is pioneered by Kiefer and Vogelsang
(2002a, 2002b, 2005), Phillips (2005), Müller (2007) and Sun et al. (2008). Recent research along
this line can be found in Sun (2014 a&b), Müller and Watson (2018) and Lazarus et al. (2019).

The rest of the paper is organized as follows. Section 2 describes the two-step GMM problem
in a time-series setting. Section 3 explores the finite-sample corrected formula for the two-step
GMM estimator. Section 4 establishes asymptotic distributions for the test statistics using the
corrected variance formula. Section 5 presents discussions on the finite-sample adjustment and
the finite-sample corrected variance formula for the iterated GMM estimator. Section 6 presents
Monte Carlo simulation results and Section 7 concludes. Proofs are presented in the Appendix.

2 Two-step GMM in Time-series

We want to estimate a d× 1 vector of parameter θ ∈ Θ using a vector of observation vt ∈ Rdx at
time t. The true parameter θ0 is assumed to be an interior point of Θ. The moment condition is
given as

Ef(vt, θ0) = 0 iff θ = θ0,

where f(vt, ·) is an m × 1 vector of twice continuously differentiable function and the process
f(vt, θ0) is stationary with zero mean. We allow f(vt, θ0) to have general autocorrelation of
unknown forms and satisfy

∑∞
j=−∞ ‖Ef(vt, θ0)f(vt−j , θ0)′‖ <∞ and some mixing conditions for

the time-series Functional Central Limit Theorem (FCLT) as follows

1√
T

[T ·]∑
t=1

f(vt, θ0)
d→ ΛW (·), (1)
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where W (·) is a m-dimensional standard Brownian motion and Ω = ΛΛ′ is a positive definte
long-run variance (LRV) of the moment process f(vt, θ0) which is defined

Ω =
∞∑

j=−∞
Ef(vt, θ0)f(vt−j , θ0).

Also, we assume that q = m − d > 0, and the rank of G = G(θ0) = E[∂f(vt, θ0)/∂θ′] is d. So,
the model is overidentified with a degree of overidentification q. Let

ft(θ) =
1

T

t∑
s=1

f(vs, θ),

and define a one-step GMM estimator as

θ̂1 = arg min
θ∈Θ

Mθ,WT

= arg min
θ∈Θ

fT (θ)′W−1
T fT (θ),

whereWT is an initial weight matrix whose components do not depend on the unknown parameter
value θ0 and p limT→∞WT = W. Using this one-step estimator, the feasible effi cient two-step
GMM estimator in Hansen(1982) is defined as

θ̂2 = arg min
θ∈Θ

Mθ,ST (θ̂1) = arg min
θ∈Θ

fT (θ)′S−1
T (θ̂1)fT (θ),

where

ST (θ) =
1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)(f(vt, θ)− fT (θ))(f(vs, θ)− fT (θ))′.

Here, Qh( tT ,
s
T ) is a symmetric weighting function with smoothing parameter h. For conventional

kernel LRV estimators, Qh (r, s) = k ((r − s) /b) and we take h = 1/b. For the orthonormal series
(OS) LRV estimators, Qh (r, s) = K−1

∑K
j=1 Φj(r)Φj(s) and we take h = K, where

{
φj (r)

}
are

orthonormal basis functions on L2[0, 1] satisfying
∫ 1

0 Φj (r) dr = 0. We parametrize h in such a
way that h indicates the level of smoothing for both types of LRV estimators.

By construction, ST (θ̂1) is a quadratic heteroskedasticity autocorrelation robust (HAR) es-
timator for the LRV Ω. It is important to note that ST (θ̂1) is a “centered”version of the LRV
estimator, as it is based on the estimation of the demeaned moment process f(vt, θ̂1) − fT (θ̂1).
Under the conventional asymptotic theory, Hall (2000) shows that the demeaning procedure can
potentially improve the power performance of the J-test using the HAR estimator. Also, this
demeaned procedure plays an important role in fixed smoothing asymptotics as the random ma-
trix limit of ST (θ0) is independent of the limiting distribution of

√
TfT (θ0) which is a normal

distribution.
Now, to investigate the asymptotic behavior of θ̂2, we look at the first order condition (FOC)

for θ̂2 given by
1

2

∂Mθ,ST (θ̂1)

∂θ

∣∣∣∣∣
θ=θ̂2

= GT (θ̂2)′S−1
T (θ̂1)fT (θ̂2) = 0, (2)
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where

GT

(
θ̂2

)
=

1

T

T∑
t=1

∂f(vt, θ)

∂θ′

∣∣∣∣∣
θ=θ̂2

.

A standard approximation to characterize the distribution of θ̂2 goes as follows. First, condition-
ing on ST (θ̂1), we do a Taylor expansion of the FOC in (2)

0 =
1

2

∂Mθ,ST (θ̂1)

∂θ

∣∣∣∣∣
θ=θ̂2

(3)

=
1

2

∂Mθ,ST (θ̂1)

∂θ

∣∣∣∣∣
θ=θ0

+
1

2

∂Mθ,ST (θ̂1)

∂θ∂θ′

∣∣∣∣∣
θ=θ0

(θ̂2 − θ0) +Op

(
1

T

)
= GT (θ0)′S−1

T (θ̂1)fT (θ0) +A(θ0, ST (θ̂1))(θ̂2 − θ0) +Op

(
1

T

)
.

Here, A(θ0, ST (θ̂1)) is the second order derivative matrix of Mθ,ST (θ̂1) at θ = θ0:

A(θ0, ST (θ̂1)) =
1

2

∂Qθ,ST (θ̂1)

∂θ∂θ′

∣∣∣∣∣
θ=θ0

=
1

2

∂GT (θ)′S−1
T (θ̂1)fT (θ)

∂θ′

∣∣∣∣∣
θ=θ0

= GT (θ0)′S−1
T (θ̂1)GT (θ0) +HT (θ0)′ (Id ⊗ S−1

T (θ̂1)fT (θ0)),

where HT (θ) ∈ Rdm×d is the second order derivative matrix of the moment process:

HT (θ0) =


∂GT (θ)
∂θ1

∣∣∣
θ=θ0

...
∂GT (θ)
∂θd

∣∣∣
θ=θ0

 .
Using the Taylor expansion of the FOC in (3),

√
T (θ̂2 − θ0) is expanded as:

√
T (θ̂2 − θ0) = −

[
A(θ0, ST (θ̂1))

]−1
GT (θ0)′S−1

T (θ̂1)
√
TfT (θ0) +Op

(
1√
T

)
, (4)

and an estimator for the asymptotic variance of θ̂2 is given by:

v̂ar(θ̂2) =
1

T

[
A(θ̂2, ST (θ̂1))

]−1 (
G′T (θ̂2)S−1

T (θ̂1)GT (θ̂2)
) [
A(θ̂2, ST (θ̂1))

]−1′
. (5)

Note that the sandwich form of v̂ar(θ̂2) in (4) is different from the standard asymptotic
variance estimates (G′T (θ̂2)S−1

T (θ̂1)GT (θ̂2))−1. This is because the second term, ΓT (θ̂2)′(Id ⊗
S−1
T (θ̂1)fT (θ̂2)), in A(θ̂2, ST (θ̂1)), which order is Op(T−1/2) = op(1), is not zero in a finite sample
and keeping this term could potentially improve v̂ar(θ̂2).When the moment conditions are linear
in the parameter θ, the non-linear correction term in A(θ̂2, ST (θ̂1)) is always zero as ΓT (θ) = 0
for all θ, and A(θ̂2, ST (θ̂1)) can be simplified as G′T (θ̂2)S−1

T (θ̂1)GT (θ̂2). As a result, the expression
for v̂ar(θ̂2) coincides with the standard GMM variance estimates, i.e.

v̂ar(θ̂2) =
1

T
(G′TS

−1
T (θ̂1)GT )−1. (6)
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From now on, we assume linearity in the moment conditions. This can be relaxed without any
diffi culties for any variance correction formula that we provide in this paper. This is because
one can always replace (6) by (5) in order to obtain the non-linear correction term ΓT (θ̂2)′(Id ⊗
S−1
T (θ̂1)fT (θ̂2)) in v̂ar(θ̂2).

3 Finite-sample Corrected Variance Formula

When the moment conditions are linear in the parameter θ, the higher order approximation error
term Op(T

−1/2) in equation (4) disappears and we have the following equation for
√
T (θ̂2 − θ0) :

√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ̂1)GT )−1G′TS

−1
T (θ̂1)

√
TfT (θ0). (7)

Under Assumptions 1—3 in Section 4, we can apply Lemma 1 in Sun (2014), for any
√
T -consistent

estimator θ̂, to obtain
ST (θ̂) = ST (θ0) + op(1). (8)

Using this result, we can approximate (7) as
√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)︸ ︷︷ ︸

:=
√
T(θ̃2−θ0)

+ op(1). (9)

Any standard approximation of the two-step GMM estimator
√
T (θ̂2 − θ0) is based on the first

term in (9) which is the infeasible transformed moment condition. This term actually coincides
with the first order expansion of the infeasible two-step GMM estimator

√
T (θ̃2 − θ0) that uses

the true parameter θ0 to evaluate the weight matrix S−1
T (θ0). So,

√
T (θ̂2 − θ0) is asymptotically

equivalent to
√
T (θ̃2− θ0) and this implies that the estimation uncertainty of the initial one-step

estimator θ̂1 in
√
T (θ̂2 − θ0) is ignored for any type of asymptotic analysis.

However, Windmeijer (2005) points out that the extra variation in
√
T (θ̂2 − θ0) due to θ̂1

can explain much of the finite sample behavior difference between
√
T (θ̂2 − θ0) and

√
T (θ̃2 − θ0).

By estimating the part of the op(1) term in (9), a finite-sample corrected variance estimate is
obtained. Windmeijer (2005) shows that the corrected variance estimate approximates the finite
sample variance well and leads to a more accurate inference. Windmeijer (2005) assumes that
the moment process f(vt, θ0) is i.i.d, but this is problematic in a time-series set up. However,
his idea of corrected variance estimate can be easily accommodated to our time-series set up. In
doing so, the key step is, instead of eliminating the estimation uncertainty of θ̂1 in (7), we further
approximate the equation (7) by Taylor expansion, as a function of θ̂1, in the estimated weight
matrix ST (θ̂1) as follows

√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) (10)

+Dθ0,ST (θ0)

√
T (θ̂1 − θ0) + op

(
1√
T

)
,

where

Dθ0,ST (θ0) =
∂ − (G′TS

−1
T (θ)GT )−1G′TS

−1
T (θ)

√
TfT (θ0)

∂θ′

∣∣∣∣∣
θ=θ0
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is a d×d matrix. Using element by element differentiation of the d×1 vector −(G′TS
−1
T (θ)GT )−1

G′TS
−1
T (θ)

√
TfT (θ0) with respect to θj , for 1 ≤ j ≤ d, we can express the j-th column ofDθ0,ST (θ0)

as follows:

Dθ0,ST (θ0)[., j] =
∂ − (G′TS

−1
T (θ)GT )−1G′TS

−1
T (θ)fT (θ0)

∂θj

∣∣∣∣∣
θ=θ0

(11)

= (G′TS
−1
T (θ0)GT )−1 ∂(G′TS

−1
T (θ)GT )

∂θj

∣∣∣∣∣
θ=θ0

(G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)fT (θ0)

−(G′TS
−1
T (θ)GT )−1 ∂(G′TS

−1
T (θ)fT (θ0)

∂θj

∣∣∣∣∣
θ=θ0

,

where the expression of the vector derivatives in (11) is given by

∂(G′TS
−1
T (θ)GT )

∂θj

∣∣∣∣∣
θ=θ0

= GT
′ ∂S

−1
T (θ)

∂θj

∣∣∣∣∣
θ=θ0

GT

= −G′TS−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

S−1
T (θ0)GT ;

∂G′TS
−1
T (θ)fT (θ0)

∂θj

∣∣∣∣∣
θ=θ0

= G′T
∂S−1

T (θ)

∂θj

∣∣∣∣∣
θ=θ0

fT (θ0)

= −G′TS−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

S−1
T (θ0)fT (θ0)

The expression Dθ0,ST (θ0)[., j] in (11) can be written as:

Dθ0,ST (θ0)[., j] = −(G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

×S−1
T (θ0)GT (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)fT (θ0)

+(G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

S−1
T (θ0)fT (θ0),

where
∂ST (θ)

∂θj
= Υj(θ) + Υ′j(θ); (12)

Υj(θ) =
1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)

(
gj(vs, θ)−

1

T

T∑
s=1

gj(vs, θ)

)

×
(
f(vt, θ0)− 1

T

T∑
s=1

f(vs, θ)

)′
;

gj(vs, θ) =
∂f(vs, θ)

∂θj
.

The expansion in (10) shows that the correction termDθ0,ST (θ0)

√
T (θ̂1−θ0) = Op(T

−1/2) vanishes
when the sample size T increases, but it is always non zero in finite samples. Therefore, taking into
account the correction term Dθ0,ST (θ0)

√
T (θ̂1 − θ0) = Op(T

−1/2) can improve the approximation

of the variance of θ̂2 in finite samples.
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4 Asymptotics for Finite-sample Corrected Statistics

4.1 Formulation of finite-sample corrected variance

One important assumption in Windmeijer(2005)’s corrected variance estimate in (14) is approx-
imating the distribution of ST (θ0) by the true population counterpart Ω. The approximation is
based on the conventional increasing smoothing asymptotics which considers h→∞ as T →∞
such that h/T → 0, as in Andrews (1991) and Sun (2014 a&b). Since ST (θ0) is treated as a con-
sistent estimator of Ω, together with the CLT assumption in (1), the term G′TS

−1
T (θ0)

√
TfT (θ0)

converges in distribution toN(0, (G′Ω−1G)). Keeping the Windmeijer’s correction termDθ0,ST (θ0)

in (10), the asymptotically equivalent representation for (10) is given as:
√
T (θ̂2 − θ0) = −(G′Ω−1G)−1G′Ω−1ΛZ1 −Dθ0,ST (θ0)(G

′W−1G)−1G′W−1ΛZ1 + op(1)(13)

= −
(

(G′Ω−1G)−1 Dθ0,ST (θ0)(G
′W−1G)−1

)( G′Λ′−1Z1

G′W−1ΛZ1

)
+ op(1),

where Z1 ∼ N(0, Id) and ΛΛ′ = Ω. The sum of two normal distribution can be represented
as a normal distribution as well, and this implies that we can obtain a normal representation,
N (0,Ξ) , of the approximated distribution of

√
T (θ̂2 − θ0), which variance covariance matrix, Ξ,

is given by:

Ξ =
(

(G′Ω−1G)−1 Dθ0,ST (θ0)(G
′W−1G)−1

)( G′Ω−1G G′W−1G
G′W−1G G′W−1ΩW−1G

)
×
(

(G′Ω−1G)−1

(G′W−1G)−1D′θ0,ST (θ0)

)
=

(
G′Ω−1G

)−1
+Dθ0,ST (θ0)

(
G′Ω−1G

)−1
+
(
G′Ω−1G

)−1
D′θ0,ST (θ0)

+Dθ0,ST (θ0)(G
′W−1G)−1

(
G′W−1ΩW−1G

)
(G′W−1G)−1D′θ0,ST (θ0).

Motivated by this, the corrected variance estimate v̂arc(θ̂2) under the increasing smoothing as-
ymptotics is given as:

v̂arc(θ̂2) = v̂ar(θ̂2) +
1

T
Dθ̂2,ST (θ̂1)v̂ar(θ̂2) (14)

+
1

T
v̂ar(θ̂2)D′

θ̂2,ST (θ̂1)
+Dθ̂2,ST (θ̂1)v̂ar(θ̂1)D′

θ̂2,ST (θ̂1)
,

where

v̂ar(θ̂1) =
1

T

(
G′TW

−1
T GT

)−1
(
G′TW

−1
T ST (θ̂1)W−1

T GT

) (
G′TW

−1
T GT

)−1
;

v̂ar(θ̂2) =
1

T

(
G′TS

−1
T (θ̂1)GT

)−1
,

and

Dθ̂2,ST (θ̂1)[., j] = (G′TS
−1
T (θ̂1)GT )−1G′TS

−1
T (θ̂1)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)fT (θ̂2).

Using the FOC, G′TS
−1
T (θ̂1)fT (θ̂2) = 0, the first term of Dθ0,ST (θ0)[., j] in (11) is always equal

to zero in the “estimated”correction term, Dθ̂2,ST (θ̂1)[., j]. The way we construct the corrected
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variance formula v̂arc(θ̂2) in (14) is the same as in Windmeijer (2005) in which it is assumed an
i.i.d moment vector {f(vt, θ0)}. The difference, in our setting, is that ST (θ̂1) for us is a HAR
estimator of the LRV which is robust to a non-i.i.d moment vector {f(vt, θ0)}.

Now, suppose we want to test the linear null hypothesis H0 : Rθ0 = r vs H0 : Rθ0 6= r,
where R is a p× d matrix with rank p ≤ d. Then, the Wald test statistics using the finite-sample
corrected variance v̂arc(θ̂2) can be constructed as follows:

Fc(θ̂2) =
1

p
(Rθ̂2 − r)′

[
Rv̂arc(θ̂2)R′

]−1
(Rθ̂2 − r), (15)

The Wald statistic based on the conventional “sandwich”formula in (6) is given by

F (θ̂2) =
1

p
(Rθ̂2 − r)′

[
Rv̂ar(θ̂2)R′

]−1
(Rθ̂2 − r). (16)

In constructing Wald statistics, we divide it by the number of hypothesis p. Although, this is
not necessary, we use it only because we anticipate a more convenient F approximation in the
following subsection.When p = 1 and for one-sided alternative hypotheses, we can construct the
corresponding finite-sample corrected and uncorrected t statistics as

tc(θ̂2) =

√
T (Rθ̂T − r)√
Rv̂arc(θ̂2)R′

and t(θ̂2) =

√
T (Rθ̂2 − r)√
Rv̂ar(θ̂2)R′

,

respectively. We assume the following.

Assumption 1 (i) For kernel LRV estimators, the kernel function k (·) satisfies the following
conditions: for any b ∈ (0, 1], kb (x) = k (x/b) is symmetric, continuous, piecewise monotonic,
and piecewise continuously differentiable and

∫∞
−∞ k

2(x) < ∞. (ii) For the OS-LRV variance
estimator, the basis functions φj (·) are piecewise monotonic, continuously differentiable and or-
thonormal in L2[0, 1] and

∫ 1
0 Φj (x) dx = 0.

Assumption 2 As T →∞, θ̂2 = θ0 +op (1) , θ̂1 = θ0 +op (1) for an interior point θ0 ∈ Θ, where
Θ ⊆ Rd is a parameter space of interest.

Assumption 3 For any θ̂ = θ0 + op (1) , G[rT ]

(
θ̂
)

= T−1
∑[rT ]

t=1
∂f(vt,θ)
∂θ′

∣∣∣
θ=θ̂

= rG + op (1) uni-

formly in r where G = G(θ0) has rank d and G(θ) = E[∂f(vt, θ)/∂θ
′].

Assumption 4 For each j = 1, . . . , d, and any θT = θ0 + op (1) , Hj,[rT ] (θT ) = rHj + op (1) uni-

formly in r where H[rT ],j

(
θ̂
)

= 1
T

∑T
t=1

∂gj(vt,θ̂)

∂θ′
and Hj = Hj(θ0) with Hj(θ) = E

[
∂gj(vt, θ)/∂θ

′] .
Assumption 5 For each j = 1, . . . , d, {gj(vt, θ0)} is a strict stationary process and

∑∞
i=−∞ ||Ψj,i|| <

∞ where Ψj,i = E[gj(vt, θ0)gj(vt−i, θ0)′], and T−1/2
∑[rT ]

t=1 (gj(vt, θ0) − E[gj(vt, θ0)]) satisfies the
FCLT.

Assumptions 1—3 are standard assumptions in the literature on HAR inference which are the
same as in Sun (2014) and Hwang and Sun (2017 and 2018). Assumptions 4—5 are needed to
prove the asymptotic validity of the finite-sample corrected variance formula. Assumptions 4—5
trivially holds if the moment conditions are linear in parameters.
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Lemma 1 Under Assumptions 1—3, we have

Dθ̂2,ST (θ̂1) = Dθ0,ST (θ0)(1 + op(1)).

which holds when h→∞ such that h is fixed as T →∞, or h→∞ such that h/T → 0.

Lemma 1 shows that the small order term Dθ0,ST (θ0) which motivates the formulation of
the finite-sample corrected variance estimate is consistently estimated by Dθ̂2,ST (θ̂1) in a relative
sense. In the proof of Lemma 1, we show that the consistency of the estimated term Dθ̂2,ST (θ̂1)
does not depend on whether the smoothing parameter h is fixed as T → ∞, or h → ∞ such
that h/T → 0. Since the variance correction terms in v̂arc(θ̂2) are of smaller order, the result of
Lemma 1 indicates that the variance-corrected statistics are expected to have the same limiting
distribution as the conventional Wald and t statistics. The following theorem formally proves
this result.

Theorem 2 Under Assumptions 1—5,
(a) tc(θ̂2) = t(θ̂2) + op(1);

(b) Fc(θ̂2) = F (θ̂2) + op(1),
where (a) and (b) hold when h→∞ such that h/T → 0, or h is fixed as T →∞.

Under the increasing smoothing asymptotics, i.e. h goes to infinity but h/T → 0, we have

that v̂ar(θ̂2)
p→ (G′Ω−1G)−1, and thus t(θ̂2)

d→ N(0, 1) and F (θ̂2)
d→ χ2

p/p. The result in Theo-
rem 2 justifies that the distribution of our finite-sample corrected t and Wald statistics can be
approximated by

tc(θ̂2)
d→ N(0, 1) and Fc(θ̂2)

d→ 1

p
χ2
p.

4.2 Fixed-smoothing asymptotics for finite-sample corrected variance

Although the conventional increasing smoothing asymptotics is a key device to prove the consis-
tency of ST (θ0) and the conventional normal and chi-square approximations of the finite-sample
corrected test statistics, the increasing smoothing asymptotics often fails to reflect finite sample
variations of the nonparametric LRV estimation of ST (θ0). In fact, there is extensive numerical
evidence that reports the poor finite sample performances of HAR inference using the increasing
smoothing asymptotics, e.g., Kiefer and Vogelsang (2002 a&b, 2005), Sun et al. (2008), and
Hwang and Sun (2017, 2019). This evidence opens a new stream of time-series research on HAR
inference. The research along this line is pioneered by Kiefer and Vogelsang (2002, 2005), Phillips
(2005), Müller (2007) and Sun et al. (2008). The HAR literature develops a new type of asymp-
totics that holds h fixed when T →∞. This tool is called “fixed smoothing asymptotics”in Sun
(2014a), and it is called “fixed-b asymptotics”in Kiefer and Vogelsang (2002 a&b, 2005). In the
context of the effi cient GMM, Sun (2014b) and Hwang and Sun (2017) show that the new as-
ymptotics yields to more accurate approximations, while the conventional increasing asymptotics
poorly performs in finite samples.

In this section, we follow Hwang and Sun (2017) and derive the fixed-smoothing asymptotics
of tc(θ̂2) and Fc(θ̂2) using orthonormal series (OS) weighting function

QK

( r
T
,
s

T

)
=

1

K

K∑
j=1

Φj

( r
T

)
Φj

( s
T

)
, (17)
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where {Φj (r)}Kj=1 are orthonormal basis functions on L
2[0, 1] satisfying

∫ 1
0 Φj (r) dr = 0. The

smoothing parameter h in Qh(r/T, s/T ) is now equal to K, which is the number of terms in
the OS-LRV estimator of ST (θ0). If K is even and {Φj (r)}Kj=1 = {Φ2j−1 (r) =

√
2 sin (2πjr) ,

Φ2j (r) =
√

2 cos (2πjr) , j = 1, 2, . . . ,K/2}, then the OS-LRV estimator is

ST (θ0) =
1

K

K∑
j=1

Uj(θ0)Uj(θ0)′;

Uj (θ0) =
1√
T

T∑
t=1

Φj(
t

T
)

[
f(vt, θ0)− 1

T

T∑
τ=1

f(vτ , θ0)

]
for j = 1, 2, . . . ,K.

The OS-LRV estimator has gained considerable attention in recent HAR literature, e.g., Phillips
(2005), Müller (2007), Sun (2013, 2014 a&b), Lazarus et al. (2018) and Lazarus et al. (2019). By
construction, the OS-LRV estimator, which takes a simple average of the first K/2 periodograms.,
is proportional to an estimator of the spectral density at the origin.

For two stochastically bounded sequences of random vectors ξn ∈ R` and ηn ∈ R`, let
a∼

be a notion of asymptotic equivalence in distribution, ξn
a∼ η

n
, that is, ξn and ηn converge in

distribution to the same limits. The fixed smoothing approximation of ST (θ0) captures the finite
sample variability of each periodgram by

Uj (θ0)
a∼ ΛUjΛ′

for each j = 1, . . . ,K, where

Uj =
1√
T

T∑
t=1

Φj(
t

T
)

(
et −

1

T

T∑
s=1

es

)
and et

i.i.d∼ N(0, Im).

From the properties of the Fourier basis functions,
∑T

t=1 Φj(
t
T ) = 0 and T−1

∑T
t=1 Φi(

t
T )Φj(

t
T ) =

1(i 6= j), it is easy to show that Ui = 1√
T

∑T
t=1 Φi(

t
T )et

i.i.d∼ N(0, Im) over j = 1, . . . ,K. Then,
holding K fixed, the OS-LRV is approximated by

ST (θ0)
a∼ S =

 S11
d×d

S22
d×q

S22
q×d

S22
q×q

 := Λ

 1

K

K∑
j=1

UjU′j

Λ′,

Note that the approximated random variable S ∼ K−1Wp(K, Im) is a scaled Wishart random
matrix with degree of freedom equal to K. The remaining question is whether tc(θ̂2) and Fc(θ̂2)
are asymptotically free of nuisance parameters including the correction term Dθ0,ST (θ0). From the

result of Theorem 1 in Sun (2014), the standard t and Wald statistics, t(θ̂2) and F (θ̂2), do not
depend on any nuisance parameters, and their limits are represented by :

t(θ̂2)
d→ T d

=
Z1 − S12S−1

22 Z2

(S11·2)1/2
; (18)

F (θ̂2)
d→ F d

=
1

p

(
Z1 − S12S−1

22 Z2

)′ S−1
11·2

(
Z1 − S12S−1

22 Z2

)
, (19)
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respectively, where Z1 ∼ N(0, Ip), Z2 ∼ N(0, Ip), Z1 ⊥ Z2, and S11·2 = S11−S12S−1
22 S21. From the

results in Theorem 2, the limiting distributions of tc(θ̂2) and Fc(θ̂2), under the fixed-smoothing
asymptotics, are given by

tc(θ̂2) = t(θ̂2) + op(1)
d→ T and Fc(θ̂2) = F (θ̂2) + op(1)

d→ F.

The fixed-K limiting distributions in (18)—(19) are nonstandard. To investigate further, we
use the well-known properties of the Wishart distribution from Proposition 7.9 in Bilodeau and
Brenner (2008), and obtain that S11·2 ∼Wp(K− p− q+ 1, Ip)/G, and S11·2 is independent of S12

and S22. This implies that conditioning on ∆ := S12S−1
22 Z2, the limiting distribution F satisfies

K − p− q + 1

K
F d

=
K − p− q + 1

K

(Z1 + ∆)′S−1
11·2(Z1 + ∆)

p

d
= Fp,K−p−q+1

(
‖∆‖2

)
, (20)

where Fp,K−p−q+1(‖∆‖2) is a noncentral F distribution with random noncentrality parameter
‖∆‖2 . The random noncentrality parameter ∆ is the source of non-standard limiting distribution
F, and in practice the critical values need be simulated. Considering our finite-sample corrected
test statistics, it would be more convenient, in empirical applications, that we can additionally
provide a correction for ∆. The modified t and Wald statistics are

t̃c(θ̂2) =
K − q
K

· tc(θ̂2)√
1 + 1

KJ(θ̂2)
; (21)

F̃c(θ̂2) =
K − p− q + 1

K
· Fc(θ̂2)

1 + 1
KJ(θ̂2)

,

where J(θ̂2) = TfT (θ̂2)′S−1
T (θ̂1)fT (θ̂2) is the standard J statistic for testing the over-identifying

restrictions.

Assumption 6 (a) T−1/2
∑T

t=1 Φj (t/T ) f(vt, θ0) converges weakly to a continuous distribution,
jointly over j = 0, 1, . . . ,K. (b) The following holds:

P

(
1√
T

T∑
t=1

Φj

(
t

T

)
f(vt, θ0) ≤ x for j = 0, 1, . . . ,K

)

= P

(
1√
T

T∑
t=1

Φj

(
t

T

)
Λet ≤ x for j = 0, 1, . . . ,K

)
+ o (1) as T →∞,

where et
i.i.d
− N(0, Im) and x ∈ Rm.

Theorem 3 Under Assumptions 1—6, for a fixed K as T →∞, we have
(a) t̃c(θ̂2)

d→ tK−q;

(b) F̃c(θ̂2)
d→ Fp,K−p−q+1.

Theorem 3 shows that the finite sample variance corrections in t̃c(θ̂2) and F̃c(θ̂2) do not change
the standard t and F limiting distributions found in Hwang and Sun (2017). Still, they can help
improve the finite sample performance of our tests. Compared to the conventional normal and

12



chi-square approximations, the fixed-smoothing asymptotics in Theorem 3 is expected to lead
to a more accurate inference because the t and F limits are able to capture the estimation
uncertainty of the non-parametric estimator ST (θ0) from the studentized HAR statistics. Also,
the J-statistic modifications in our statistics can capture the estimation uncertainty of the two-
step GMM estimator θ̂2 arising from the random GMM weight ST (θ0), and thus remove the
random noncentrality parameter ∆ in the limit. The standard t and F limiting distributions are
very appealing in empirical applications.

5 Discussions

5.1 Finite-sample adjustment of the corrected variance formula

Although our corrected variance formula v̂arc(θ̂2) is designed to have more variation than the
uncorrected variance formula v̂ar(θ̂2), the randomness of Dθ̂2,ST (θ̂1) can possibly make v̂arc(θ̂2)

smaller than v̂ar(θ̂2). For example, when we have that v̂arc(θ̂2)−v̂ar(θ̂2) is negative semi-definite
in finite samples, the corrected Wald test statistics Fc(θ̂2) could be larger than the uncorrected
statistics F (θ̂2). Since the motivation of our corrected variance formula and corresponding t and
Wald statistics is to reduce the size distortion, we set the gap between v̂arc(θ̂2) and v̂ar(θ̂2)
to be positive. Thus, we propose to replace v̂arc(θ̂2) by v̂aradjc (θ̂2) where the adjusted variance
correction v̂aradjc (θ̂2) satisfies

v̂aradjc (θ̂2)− v̂ar(θ̂2) ≥ 0.

The adjustment step comes from looking at the matrix MT , which is the difference between
v̂arc(θ̂2) and v̂ar(θ̂2), calculate the spectral decomposition of MT = VTLTV

′
T , and replace the

negative components of the diagonal eigenvalue matrix LT with zeros. If we define this new
eigenvalue matrix as L̃T , the adjusted version of v̂arc(θ̂2) is constructed as.

v̂aradjc (θ̂2) = v̂ar(θ̂2) + M̃T where M̃T = VT L̃TV
′
T .

Using these adjusted variances, the corrected t and Wald statistics are defined as :

t̃adjc (θ̂2) =
K − q
K

· tadjc (θ̂2)√
1 + 1

KJ(θ̂2)
;

F̃ adjc (θ̂2) =
K − p− q + 1

K
· F adjc (θ̂2)

1 + 1
KJ(θ̂2)

,

where

tadjc (θ̂2) =

√
T (Rθ̂T − r)

{Rv̂aradjc (θ̂2)R′}1/2
; (22)

F adjc (θ̂2) =
1

p

(
Rθ̂2 − r

)′ (
Rv̂aradjc (θ̂2)R′

)−1 (
Rθ̂2 − r

)
,

By construction, tadjc (θ̂2) and F̃ adjc (θ̂2) always satisfy:

|t̃adjc (θ̂2)| ≤ |t̃c(θ̂2)| and F̃ adjc (θ̂2) ≤ F̃c(θ̂2),

and
tadjc (θ̂2)

d→ tK−q and F̃c(θ̂2)
d→ Fp,K−p−q+1.
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5.2 Finite-sample correction for iterated GMM

Another popular GMM estimator is the iterated GMM estimator studied in Hansen et al. (1996),
which is designed to improve the finite sample performance of the two-step GMM estimator. For
more discussion on the iterated GMM estimator, see Hansen and Lee (2019). Let us define the

j-th iterated GMM estimator θ̂
j

IE as the solution to the following minimization problem

θ̂
j

IE = arg min
θ∈Θ

fT (θ)′S−1
T (θ̂

j−1

IE )fT (θ).

Under some regular conditions, Hansen and Lee (2019) shows that the loop of the iteration

sequence θ̂
j

IE for j = 1, 2, . . . is a contraction mapping, which leads the iteration estimator θ̂
∞
IE

to a fixed point. Let θ̂
0

IE be the two-step estimator θ̂2.Then, the asymptotic distribution of√
T (θ̂

1

IE − θ0) can be represented as follows:

√
T (θ̂

1

IE − θ0) = −(G′TS
−1
T (θ̂2)GT )−1G′TS

−1
T (θ̂2)

√
TfT (θ0) (23)

= −(G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) +Dθ0,ST (θ0)

√
T (θ̂2 − θ0) + op

(
1√
T

)
.

Recall that we have the expansion of the two-step GMM θ̂2 as

√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) +Dθ0,ST (θ0)

√
T (θ̂1 − θ0) + op

(
1√
T

)
.

Substituting the above expansion into (23), we can represent the first iteration estimator
√
T (θ̂

1

IE−
θ0) as

√
T (θ̂

1

IE − θ0) = −
(
Id +Dθ0,ST (θ0)

)
(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

+D2
θ0,ST (θ0)

√
T (θ̂1 − θ0) + op

(
1√
T

)
The leading term in

√
T (θ̂

1

IE − θ0) consists of a (mixed) normal distribution part which is scaled
by Id+Dθ0,ST (θ0). Also, we notice the effect of the one-step estimator

√
T (θ̂1−θ0) decays through

the iteration procedure when we keep repeating this substitution until the j-th iteration:

√
T (θ̂

j

IE − θ0) = −
[
Id +

j∑
i=1

Di
θ0,ST (θ0)

]
(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

+Dj+1
θ0,ST (θ0)

√
T (θ̂1 − θ0) + op

(
1√
T

)
.

When the number of iterations j goes to infinity, θ̂
j

IE converges to θ̂
∞
IE. The impact of

√
T (θ̂1−θ0)

on
√
T (θ̂

j

IE − θ0) through Dj+1
θ0,ST (θ0) = Op(T

−(j+1)/2) can be perfectly removed and we have that

√
T (θ̂

∞
IE − θ0) = −(G′TS

−1
T (θ0)GT )−1GT

′S−1
T (θ0)

√
TfT (θ0) +Dθ0,ST (θ0)

√
T (θ̂

∞
IE − θ0) + op

(
1√
T

)
= −

(
Id −Dθ0,ST (θ0)

)−1
(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) + op

(
1√
T

)
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Thus, the corrected variance estimate for θ̂
∞
IE can be constructed as follows :

v̂arc

(
θ̂
∞
IE

)
=

(
Id −Dθ̂

∞
IE ,ST (θ̂

∞
IE )

)−1
v̂ar

(
θ̂
∞
IE

)(
Id −D′θ̂∞IE ,ST (θ̂

∞
IE )

)−1
(24)

v̂ar
(
θ̂
∞
IE

)
=

1

T

(
G′TS

−1
T (θ̂

∞
IE)GT

)−1
,

The corresponding t and Wald statistics are

t(θ̂
∞
IE) =

Rθ̂
∞
IE − r√

Rv̂ar(θ̂
∞
IE)R′

; (25)

F (θ̂
∞
IE) =

1

p

(
Rθ̂
∞
IE − r

)′ (
Rv̂ar(θ̂

∞
IE)R′

)−1 (
Rθ̂
∞
IE − r

)
.

Using the finite-sample corrected asymptotic variance estimates v̂arc(θ̂
∞
IE), one can also construct

t and Wald statistics for θ̂
j

IE as

tc(θ̂
∞
IE) =

Rθ̂
∞
IE − r√

Rv̂arc(θ̂
∞
IE)R′

; (26)

Fc(θ̂
∞
IE) =

1

p

(
Rθ̂
∞
IE − r

)′ (
Rv̂arc(θ̂

∞
IE)R′

)−1 (
Rθ̂
∞
IE − r

)
.

The asymptotic distribution of Fc(θ̂
∞
IE) can be characterized as

Fc(θ̂
∞
IE) =

1

p
×
[
R
(
Id −Dθ0,ST (θ0)

)−1
(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

]′
×

 R
(
Id −Dθ̂

∞
IE ,ST (θ̂

∞
IE )

)−1 (
G′TS

−1
T (θ̂

∞
IE)GT

)−1

·
(
Id −D′θ̂∞IE ,ST (θ̂

∞
IE )

)−1
R′


−1

×
[
R
(
Id −Dθ0,ST (θ0)

)−1
(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

]
+ op(1).

Under the fixed smoothing asymptotics, we have that ST (θ0)
a∼ ST . The asymptotically equivalent

distribution of Fc(θ̂
∞
IE) is then given by

FIE =
1

P

[
R̃(G′TS

−1
T GT )−1G′TS

−1
T ΛZ

]′ [
R̃
(
G′TS

−1
T GT

)−1
R̃′
]−1 [

R̃(G′TS
−1
T GT )−1G′TS

−1
T ΛZ

]
,

(27)
where R̃ = R(Id −Dθ0,ST (θ0))

−1 is a p× d matrix. Considering R̃ = R+ op(1) and Theorem 1 in

Sun(2014), we obtain FIE = F+op(1). Thus, instead of approximating Fc(θ̂
∞
IE) by a conventional

χ2
d/p distribution, the standard t and F distributions can be used to obtain asymptotic critical
values for tadjc (θ̂

∞
IE) and F adjc (θ̂

∞
IE) together with the corrected variance estimate v̂arc(θ̂

∞
IE), the

J-statistic modification, and the finite-sample adjustments in Subsection 5.1:

t̃adjc (θ̂
∞
IE) =

K − q
K

· tadjc (θ̂
∞
IE)√

1 + 1
KJ(θ̂

∞
IE)

d→ tK−q; (28)

F̃ adjc (θ̂
∞
IE) =

K − p− q + 1

K
· F adjc (θ̂

∞
IE)

1 + 1
KJ(θ̂

∞
IE)

d→ FK−p−q+1.
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6 Simulation Results

We follow the simulation design in Sun (2014b) and consider the following linear structural model:

yt = α+ x1,tβ1 + x2,tβ2 + x3,tβ3 + εy,t,

where x1,t , x2,t and x3,t are scalar regressors that are correlated with εy,t. The unknown parameter
vector is θ = (α, β1, β2, β3)′ ∈ Rd with d = 4 and there are m instruments z0,t, z1,t, ..., zm−1,t with
z0,t ≡ 1, and the reduced form equations for x1,t, x2,t and x3,t are given by

xj,t = zj,t +
m−1∑
i=d−1

zi,t + εxj ,t for j = 1, 2, 3.

We assume that zi,t for i ≥ 1 follows an AR(1) process

zi,t = ρzi,t−1 +
√

1− ρ2ezi,t,

where

ezi,t =
eizt + e0

zt√
2

.

and [e0
zt, e

1
zt, ..., e

m−1
zt ]′

iid
−N(0, Im). The DGP for εt = (εyt, εx1t, εx2t, εx3t)

′ is the same as the DGP
for (z1,t, ..., zm−1,t)

′ except for the dimensionality difference. By construction, the two vectors,
εt and (z1,t, ..., zm−1,t)

′, are independent. We consider the true parameters to be θ0 = (0, 0, 0, 0)′

and ρ = 0.5.
Define xt = (x1,t, x2,t, x3,t)

′ and zt = (z0,t, z1,t, ..., zm−1,t)
′, then we have the m-number of the

moment conditions given by

E[f(vt, θ0)] = E[zt(yt − x′tθ0)] ∈ Rm,

and provided a initial weight matrix W−1
T , the one-step GMM estimator and its asymptotic

variance estimator is as follows:

θ̂1 =
(
X ′ZW−1

T Z ′X
)−1 (

X ′ZW−1
T Z ′y

)
;

v̂ar(θ̂1) = T
(
X ′ZW−1

T Z ′X
)−1

(
X ′ZW−1

T ST

(
θ̂1

)
W−1
T Z ′X

) (
X ′ZW−1

T Z ′X
)−1

with X = (x1, ..., xT )′ ∈ RT×d, Z = (z1, ..., zT )′ ∈ RT×m, y = (y1, ..., yT )′ and

ST

(
θ̂1

)
=

1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)(ztεy,t(θ̂1)− 1

T

T∑
j=1

zjεy,j(θ̂1))

×(zsεy,s(θ̂1)− 1

T

T∑
j=1

zjεy,j(θ̂1))′.

We choose the initial weight matrix WT as Z ′Z/T. This makes the initial one-step estimator θ̂1

equivalent to the two-stage least square estimator (2SLS). Based on these formulations, we will
check a variety of test statistics including both the two-step and iteration procedures.
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1) Feasible two-step estimator θ̂2: The effi cient two-step estimator and its (uncorrected) vari-
ance estimator are as follows

θ̂2 =
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

X ′ZS−1
T (θ̂1)Z ′y;

v̂ar(θ̂2) = T
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

;

v̂arc(θ̂2) = v̂ar(θ̂2) +Dθ̂2,ST (θ̂1)v̂ar(θ̂2) + v̂ar(θ̂2)D′
θ̂2,ST (θ̂1)

+Dθ̂2,ST (θ̂1)v̂ar(θ̂1)D′
θ̂2,ST (θ̂1)

,

where the j-th column of Dθ̂IE,1,SN (θ̂2) is given by

Dθ̂IE,1,SN (θ̂2) [., j] = −
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

X ′ZS−1
T (θ̂1)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)Z ′εy(θ̂2)

with εy(θ̂1) =
(
εy,1(θ̂1), ..., εy,T (θ̂1)

)′
and ∂ST (θ)

∂θj

∣∣∣
θ=θ̂1

is defined by:

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

where

Υj

(
θ̂1

)
= − 1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)

(
ztxj,t −

1

T

T∑
i=1

zixj,i

)(
εy,s(θ̂1)z′s −

1

T

T∑
i=1

εy,i(θ̂1)z′i

)
,

and the corresponding Wald test statistics, F (θ̂2), F̃c(θ̂2), and F̃ adjc (θ̂2) are of the form
shown in (16), (15), and (22), respectively.

2) Iterated estimator θ̂∞: The iteration estimator and its (uncorrected) variance estimator is
given by

θ̂
∞
IE =

(
X ′ZS−1

T (θ̂
∞
IE)Z ′X

)−1
X ′ZS−1

T (θ̂
∞
IE)Z ′y;

v̂arc(θ̂
∞
IE) = (Id −Dθ̂

∞
IE ,ST (θ̂

∞
IE)

)−1v̂ar(θ̂
∞
IE)(Id −D′θ̂∞IE ,ST (θ̂

∞
IE)

)−1;

v̂ar(θ̂
∞
IE) = T

(
X ′ZS−1

T (θ̂
∞
IE)Z ′X

)−1
,

where

Dθ̂∞,ST (θ̂∞) [., j] = −
(
X ′ZS−1

T (θ̂
∞
IE)Z ′X

)−1
X ′ZS−1

T (θ̂
∞
IE)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂

∞
IE

S−1
T (θ̂

∞
IE)Z ′εy(θ̂

∞
IE)

and ∂ST (θ)
∂θj

∣∣∣
θ=θ̂

∞
IE

= Υj(θ̂
∞
IE) + Υj(θ̂

∞
IE)′. The corresponding Wald test statistics, F (θ̂

∞
IE),

F̃c(θ̂
∞
IE), and F̃ adjc (θ̂

∞
IE) are shown in (25), (26), and (28), respectively.
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6.1 Point estimation

We construct the uncorrected and corrected asymptotic variance estimates by employing the
commonly used Bartlett kernel. For the basis functions in the OS-HAR estimation, we use the
following orthonormal basis functions {Φj}j=1 in L2[0, 1]:

Φ2j−1(x) =
√

2 cos(2jπx) and Φ2j(x) =
√

2 sin(2jπx) for j = 1, ...,K/2.

For the choice of K in the OS-LRV estimation, we employ the following AMSE-optimal formula
in Phillips (2005):

KMSE = 2×
⌈

0.5

(
tr [(Im2 +Kmm)(Ω∗ ⊗ Ω∗)]

4vec(B∗)′vec(B∗)

)1/5

T 4/5

⌉
,

where d·e is the ceiling function, Kmm is m2 ×m2 commutation matrix and

B∗ = −π
2

6

∞∑
j=−∞

j2Eu∗tu
∗′
t−j .

Similarly, in the case of kernel LRV estimation, we select the smoothing parameter b according
to the AMSE-optimal formula in Andrews (1991). The unknown parameters in the AMSE are
either calibrated or data-driven using the VAR(1) plug-in approach. The qualitative messages
remain the same regardless of how the unknown parameters are obtained.

We consider m ∈ {5, 7, 9} and the corresponding degrees of overidentification are q = {1, 3,
5}.We look at a finite sample performance of GMM estimators, θ̂1, θ̂2, and θ̂

∞
IE, and corresponding

asymptotic variance estimates proposed in the paper. The number of replication is 10, 000 in all
of our Monte Carlo simulations.Tables 1—6 show the results which can be summarized as follows.

First, the asymptotic variance estimates of the one-step estimator are close to the actual
finite sample variances. This is because the one-step estimator does not require a non-parametric
LRV estimate as its GMM weight matrix. This is consistent with Hansen et al. (1996) and in
Windmeijer (2005). Second, in contrast to the one-step GMM, the asymptotic variance estimates
of the two-step GMM estimators are severely affected by a downward bias in finite samples. The
bias is more serious when the sample size is relatively small. For example, when T = 100 and
q = 3, Table 1 indicates that the asymptotic variance estimates, V̂ ar(θ̂2), is about 35% downward
biased from the true finite sample variance V ar(θ̂2).When T = 200, the downward bias decreases
by 13%. The bias becomes larger as the degree of overidentification q increases. Table 4 shows
the same quantitative messages using the OS-LRV and the iterated GMM estimator.

Table 1 also shows that the finite-sample corrected variance estimate, V̂ ar
adj
c (θ̂2), proposed

in this paper, successfully reduces the downward biases of V̂ ar(θ̂2). For instance, when T = 100

and q = 3, V̂ ar
adj

(θ̂2) reduces the bias of V̂ ar(θ̂2) by 11%. The improving bias correction of our
estimator increases as q increases. We find the same quantitative messages using the OS-LRV
and the iterated GMM estimator in Table 4.

Although our corrected variance formula successfully improves the finite-sample behaviors of
the asymptotic variance estimates for the GMM estimators, there is still a notable difference
between the finite-sample corrected asymptotic variance estimate and the actual finite sample
variances, especially when ρ increases. This is not surprising given that the time-series GMM
method bears a large amount of finite-sample variability from the non-parametric LRV estimator.
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Moreover, the finite-sample variability increases as the time series dependence increases. This can
be seen by comparing the results for different values of ρ in Tables 1—6. Our findings are consistent
with recent HAR literature, e.g. Sun (2014b) and Hwang and Sun (2017, 2018). Considering the
non-parametric LRV estimator, we construct t and Wald statistics for the testing problem using

V̂ ar
adj
c (θ̂2) and investigate the finite sample performances of the standard t and F tests proposed

in this paper.

6.2 Hypothesis testing

We consider the following null hypothesis of interest

H0 : β1 = β2 = β3 = 0,

where the number of restricted parameters in R is p = 3. The significance level α is 5% . For
the Bartlett-LRV, we examine the empirical size of the standard Wald statistics, F (θ̂2), and
the finite-sample corrected Wald statistics, F adjc (θ̂2), using the conventional chi-square critical
values. For the OS-LRV, we examine the empirical size of the Wald statistics, F̃ (θ̂2), the finite-
sample corrected and the modified Wald statistics, F̃ adjc (θ̂2), using the asymptotic F critical
values derived under the fixed smoothing asymptotics. The same test statistics with the iterated
GMM estimators, F (θ̂

∞
IE), F adjc (θ̂

∞
IE), F̃ (θ̂

∞
IE), and F̃ adjc (θ̂

∞
IE), are considered.

Table 7 reports the empirical size of the two-step and the iteration procedures based on the
conventional chi-square critical values with the Bartlett-LRV. It is clear that the tests based on
the uncorrected variance estimates, F (θ̂2) and F (θ̂

∞
IE), suffer from severe size distortions. For

example, when T = 100 and ρ = 0.50, the empirical sizes of F (θ̂2) and F (θ̂
∞
IE) are reported to be

around 21%—38% and these size distortions increase up to 34%—57% when ρ becomes 0.70. As we
point out, one possible reason for the failure of chi-square test is the different behavior between
the asymptotic variance estimate and the actual finite sample variance of the two-step GMM
estimators. The difference can be reflected on the corrected variance estimates that we provide.
When the corrected versions of test statistics F adjc (θ̂2) and F adjc (θ̂

∞
IE) are used, they can reduce

the size distortions significantly. As an example, with the Bartlett kernel estimates, the empirical
size distortions of F (θ̂2) and F (θ̂

∞
IE), which are around 13%—22% when T = 100 and ρ = 0.50, are

reduced to 12%—16%. Lastly, the results in Table 7 also indicate that the size distortions become
larger as the degree of overidentification q increases.

Although the simulation results with the chi-square critical values suggest that the variance
corrections can improve the finite sample inferences, the empirical sizes in Table 7 indicate the
limitations of the chi-square test. This is because the chi-square critical value from the increasing
smoothing asymptotics cannot capture the estimation uncertainty in the nonparametric weight
matrix ST (θ0). To reflect the estimation uncertainty of ST (θ0) and make a further improvement
on the finite sample inference, we employ the F critical values using the test statistics driven by
the fixed smoothing asymptotics. The results are provided in Table 8. We first observe that the
size distortions of all testing procedures are substantially reduced. For example, the empirical
sizes of F̃ (θ̂2) and F̃ (θ̂

∞
IE) are reported to be between 10%—18% when T = 100 and ρ = 0.50.

Thus, the F tests clearly improve the empirical sizes from the previous chi-square tests reducing
by 16%. This agrees with the previous literature such as Hwang and Sun (2017) and Kiefer and
Vogelsang (2005) which highlight the accuracy of the fixed smoothing asymptotics.

Moreover, the tests with corrected variance estimates, F̃ adjc (θ̂2) and F̃ adjc (θ̂
∞
IE), can further

improve the empirical size distortions. This is shown in Table 8 which indicates that the empirical
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size distortions are further reduced to 8%—11% when T = 100 and ρ = 0.50.The rest of the results
in Table 8 exhibit similar quantitative and qualitative interpretations. In sum, our empirical
findings are consistent with the theoretical results developed in this paper which indicate that
F̃ adjc (θ̂2) and F̃ adjc (θ̂

∞
IE) procedures are able to further refine the fixed smoothing asymptotics

by capturing the initial estimation uncertainty from the non-parametric LRV estimator. Also,
it is interesting to notice that the amount of size improvement using F̃ adjc (θ̂2) and F̃ adjc (θ̂

∞
IE) is

increasing as the degree of overidentification q increases. But there is no clear evidence for the
advantage of iteration procedures θ̂

∞
IE, as the performance of θ̂

∞
IE and θ̂2 are very close to each

other in all cases.
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7 Conclusion

This paper develops a more accurate heteroskedasticity autocorrelated robust (HAR) inference as
well as a more accurate asymptotic variance estimate for effi cient GMM estimators in time-series.
We extend Windmeijer (2005)’s approach to the time series setting by explicitly considering the
non-parametric LRV estimator in his corrected variance formula. The finite-sample corrected
variance estimate in our paper successfully corrects the bias arising from the estimated LRV. We
formally show the consistency of the finite-sample corrected variance estimate, and prove that
this consistency does not depend on whether the smoothing parameter in the LRV estimator is
fixed or is increasing with respect to the sample size.

With our finite-sample corrected variance estimator, this paper constructs t and Wald sta-
tistics using the fixed smoothing asymptotics developed in recent HAR literature. The standard
t and F limiting distributions derived under the fixed-smoothing asymptotics provide a valid
solution to the effi cient GMM inference problem. Our results are very appealing to practitioners
because they can apply the finite-sample corrected variance formula and the corresponding tests
using the standard t and F critical values. Thus, no further simulations or re-sampling methods
are needed.

Our Monte Carlo result sow that the asymptotic t and F tests developed in this paper further
reduce the empirical size distortions compared to the existing tests in Sun (2014b) and Hwang
and Sun (2017). Also, our numerical findings show that the amount of size improvement increases
as the degree of overidentification increases or the time series dependence increases.
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Table 1: Finite sample performance of GMM estimators and asymptotic variance estimates using
Bartlett LRV where ρ = 0.30

ρ = 0.30 with Bartlett-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0011 0.0015 0.0012 0.0015 0.0009 -0.0004
V ar(θ̂1) 0.0174 0.0088 0.0168 0.0081 0.0162 0.0081
V̂ ar(θ̂1) 0.0141 0.0075 0.0135 0.0072 0.0131 0.0070

θ̂2 0.0013 0.0018 0.0018 0.0020 0.0008 -0.0006
V ar(θ̂2) 0.0181 0.0089 0.0185 0.0086 0.0193 0.0089
V̂ ar(θ̂2) 0.0137 0.0073 0.0120 0.0067 0.0107 0.0063

V̂ ar
adj
c (θ̂2) 0.0146 0.0076 0.0139 0.0073 0.0133 0.0071

θ̂
∞
IE 0.0015 0.0017 0.0014 0.0019 0.0014 -0.0007

V ar(θ̂IE) 0.0181 0.0089 0.0188 0.0086 0.0200 0.0090
V̂ ar(θ̂IE) 0.0137 0.0073 0.0121 0.0067 0.0107 0.0063

V̂ ar
adj
c (θ̂IE) 0.0147 0.0076 0.0142 0.0073 0.0139 0.0072

Table 2: Finite sample performance of GMM estimators and asymptotic variance estimates using
Bartlett LRV where ρ = 0.50

ρ = 0.50 with Bartlett-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0015 0.0018 0.0016 0.0016 0.0003 0.0001
V ar(θ̂1) 0.0244 0.0122 0.0231 0.0113 0.0221 0.0111
V̂ ar(θ̂1) 0.0170 0.0094 0.0160 0.0089 0.0153 0.0087

θ̂2 0.0014 0.0019 0.0025 0.0019 -0.0008 -0.0002
V ar(θ̂2) 0.0254 0.0125 0.0258 0.0122 0.0269 0.0125
V̂ ar(θ̂2) 0.0162 0.0091 0.0136 0.0081 0.0117 0.0074

V̂ ar
adj
c (θ̂2) 0.0179 0.0096 0.0169 0.0091 0.0161 0.0088

θ̂
∞
IE 0.0018 0.0017 0.0019 0.0016 -0.0005 0.0001

V ar(θ̂
∞
IE) 0.0255 0.0125 0.0264 0.0123 0.0284 0.0128

V̂ ar(θ̂
∞
IE) 0.0162 0.0091 0.0137 0.0081 0.0117 0.0074

V̂ ar
adj
c (θ̂

∞
IE) 0.0181 0.0097 0.0173 0.0093 0.0167 0.0090
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Table 3: Finite sample performance of GMM estimators and asymptotic variance estimates using
Bartlett LRV where ρ = 0.70

ρ = 0.70 with Bartlett-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0048 0.0030 -0.0007 -0.0003 0.0029 -0.0005
V ar(θ̂1) 0.0440 0.0213 0.0398 0.0199 0.0372 0.0194
V̂ ar(θ̂1) 0.0231 0.0140 0.0212 0.0132 0.0196 0.0127

θ̂2 0.0039 0.0030 -0.0012 0.0016 0.0004 0.0014
V ar(θ̂2) 0.0463 0.0222 0.0453 0.0223 0.0465 0.0226
V̂ ar(θ̂2) 0.0214 0.0133 0.0166 0.0111 0.0132 0.0096

V̂ ar
adj
c (θ̂2) 0.0254 0.0147 0.0241 0.0138 0.0229 0.0130

θ̂
∞
IE 0.0028 0.0031 -0.0010 0.0011 0.0012 0.0006

V ar(θ̂
∞
IE) 0.0469 0.0223 0.0473 0.0227 0.0508 0.0236

V̂ ar(θ̂
∞
IE) 0.0214 0.0133 0.0165 0.0111 0.0131 0.0096

V̂ ar
adj
c (θ̂

∞
IE) 0.0258 0.0148 0.0243 0.0141 0.0218 0.0136
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Table 4: Finite sample performance of GMM estimators and asymptotic variance estimates using
OS-LRV where ρ = 0.30

ρ = 0.30 with OS-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0048 0.0030 -0.0007 -0.0003 0.0029 -0.0005
V ar(θ̂1) 0.0440 0.0213 0.0398 0.0199 0.0372 0.0194
V̂ ar(θ̂1) 0.0231 0.0140 0.0212 0.0132 0.0196 0.0127

θ̂2 0.0011 0.0017 0.0016 0.0016 0.0016 -0.0009
V ar(θ̂2) 0.0182 0.0089 0.0191 0.0087 0.0205 0.0091
V̂ ar(θ̂2) 0.0142 0.0075 0.0123 0.0069 0.0106 0.0064

V̂ ar
adj
c (θ̂2) 0.0153 0.0078 0.0142 0.0075 0.0133 0.0071

θ̂
∞
IE 0.0013 0.0017 0.0018 0.0017 0.0024 -0.0007

V ar(θ̂
∞
IE) 0.0183 0.0089 0.0195 0.0087 0.0215 0.0092

V̂ ar(θ̂
∞
IE) 0.0143 0.0075 0.0124 0.0069 0.0107 0.0064

V̂ ar
adj
c (θ̂

∞
IE) 0.0154 0.0078 0.0145 0.0075 0.0135 0.0072

Table 5: Finite sample performance of GMM estimators and asymptotic variance estimates using
OS-LRV where ρ = 0.50

ρ = 0.50 with OS-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0048 0.0030 -0.0007 -0.0003 0.0029 -0.0005
V ar(θ̂1) 0.0440 0.0213 0.0398 0.0199 0.0372 0.0194
V̂ ar(θ̂1) 0.0231 0.0140 0.0212 0.0132 0.0196 0.0127

θ̂2 0.0019 0.0020 0.0017 0.0022 -0.0013 -0.0010
V ar(θ̂2) 0.0257 0.0125 0.0270 0.0124 0.0296 0.0130
V̂ ar(θ̂2) 0.0174 0.0097 0.0142 0.0085 0.0117 0.0076

V̂ ar
adj
c (θ̂2) 0.0192 0.0102 0.0177 0.0095 0.0162 0.0090

θ̂
∞
IE 0.0022 0.0016 0.0015 0.0020 -0.0005 -0.0003

V ar(θ̂
∞
IE) 0.0258 0.0125 0.0280 0.0125 0.0314 0.0133

V̂ ar(θ̂
∞
IE) 0.0175 0.0097 0.0144 0.0085 0.0117 0.0077

V̂ ar
adj
c (θ̂

∞
IE) 0.0194 0.0102 0.0179 0.0096 0.0161 0.0091
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Table 6: Finite sample performance of GMM estimators and asymptotic variance estimates using
OS-LRV where ρ = 0.70

ρ = 0.70 with OS-LRV
q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

θ̂1 0.0048 0.0030 -0.0007 -0.0003 0.0029 -0.0005
V ar(θ̂1) 0.0440 0.0213 0.0398 0.0199 0.0372 0.0194
V̂ ar(θ̂1) 0.0231 0.0140 0.0212 0.0132 0.0196 0.0127

θ̂2 0.0038 0.0032 -0.0015 0.0015 -0.0017 0.0010
V ar(θ̂2) 0.0468 0.0225 0.0487 0.0231 0.0551 0.0242
V̂ ar(θ̂2) 0.0240 0.0146 0.0177 0.0120 0.0131 0.0100

V̂ ar
adj
c (θ̂2) 0.0284 0.0160 0.0256 0.0147 0.0238 0.0136

θ̂
∞
IE 0.0022 0.0032 -0.0015 0.0014 0.0012 0.0002

V ar(θ̂
∞
IE) 0.0476 0.0226 0.0511 0.0236 0.0578 0.0254

V̂ ar(θ̂
∞
IE) 0.0242 0.0147 0.0176 0.0120 0.0128 0.0101

V̂ ar
adj
c (θ̂

∞
IE) 0.0286 0.0162 0.0244 0.0149 0.0194 0.0135
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Table 7: Empirical size of two step and iteration procedures based on the Bartlett kernel and
asymptotic Chi square test under the increasing smoothing asymptotics

Bartlett-LRV using χ1−α
p /p

ρ = 0.30

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F (θ̂2) 0.1404 0.1014 0.1949 0.1253 0.2533 0.1508
F adjc (θ̂2) 0.1186 0.0917 0.1399 0.0975 0.1643 0.1094

F (θ̂
∞
IE) 0.1412 0.1011 0.1945 0.1256 0.2604 0.1521

F adjc (θ̂
∞
IE) 0.1192 0.0904 0.1417 0.0978 0.1651 0.1092

ρ = 0.50

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F (θ̂2) 0.2085 0.1416 0.2793 0.1816 0.3608 0.2241
F adjc (θ̂2) 0.1725 0.1211 0.1944 0.1357 0.2300 0.1539

F (θ̂
∞
IE) 0.2078 0.1406 0.2841 0.1830 0.3769 0.2258

F adjc (θ̂
∞
IE) 0.1718 0.1211 0.1988 0.1359 0.2436 0.1556

ρ = 0.70

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F (θ̂2) 0.3408 0.2223 0.4420 0.2977 0.5478 0.3615
F adjc (θ̂2) 0.2704 0.1882 0.3008 0.2118 0.3500 0.2410

F (θ̂
∞
IE) 0.3401 0.2231 0.4570 0.3034 0.5731 0.3774

F adjc (θ̂
∞
IE) 0.2743 0.1872 0.3260 0.2194 0.4033 0.2516
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Table 8: Empirical size of two step and iteration procedures based on the OS-LRV and asymptotic
F test under the fixed smoothing asymptotics

OS-LRV using F1−α
p,K−p−q+1/p

ρ = 0.30

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F̃ (θ̂2) 0.0821 0.0735 0.1076 0.0840 0.1287 0.0938
F̃ adjc (θ̂2) 0.0682 0.0657 0.0708 0.0650 0.0750 0.0650

F̃ (θ̂
∞
IE) 0.0818 0.0729 0.1087 0.0840 0.1364 0.0957

F̃ adjc (θ̂
∞
IE) 0.0671 0.0656 0.0712 0.0636 0.0828 0.0632

ρ = 0.50

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F̃ (θ̂2) 0.1024 0.0828 0.1344 0.1022 0.1712 0.1223
F̃ adjc (θ̂2) 0.0838 0.0710 0.0828 0.0730 0.0909 0.0785

F̃ (θ̂
∞
IE) 0.1042 0.0838 0.1368 0.1043 0.1815 0.1253

F̃ adjc (θ̂
∞
IE) 0.0830 0.0704 0.0883 0.0743 0.1050 0.0812

ρ = 0.70

q = 1 q = 3 q = 5

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

F (θ̂2) 0.1346 0.1062 0.1779 0.1340 0.2200 0.1653
F adjc (θ̂2) 0.1007 0.0883 0.0984 0.0892 0.1010 0.0975

F (θ̂
∞
IE) 0.1354 0.1073 0.1864 0.1367 0.2414 0.1732

F adjc (θ̂
∞
IE) 0.1045 0.0883 0.1167 0.0925 0.1444 0.1089
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8 Appendix

Before we prove Lemma 1, we need technical results provided in the following lemmas. Let us
define

Υ∗j (θ̂1) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
gj(vt, θ̂1)f(vs, θ̂1)′,

where

Q∗h(r, s) = Qh(r, s)−
∫ 1

0
Qh(τ1, s)dτ1 −

∫ 1

0
Qh(r, τ2)dτ2 +

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2. (29)

Lemma 4 Under Assumptions 1 and h→∞ such that h/T → 0.
(a) T−2

∑T
τ1=1

∑T
τ2=1Qh( τ1T ,

τ2
T )−

∫ 1
0

∫ 1
0 Qh(τ1, τ2)dτ1dτ2 = o(1).

(b) T−1
∑T

τ=1Qh
(
t
T ,

τ
T

)
−
∫ 1

0 Qh
(
t
T , τ2

)
dτ2 = o(1).

(c) T−1
∑T

t=1Q
∗
h

(
t
T ,

τ
T

)
= o(1).

Proof of 4. We start by proving the results for the case when Qh(r, s) = k((r − s)/b). Denote
BT = bT. For part (a),

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
) =

1

T 2

T∑
τ1=1

T∑
τ2=1

k

(
τ1 − τ2

BT

)
=

1

T

T−1∑
j=−T+1

(T − 1− |j|)
T

k

(
j

BT

)

=

(
BT
T

)
1

BT

T−1∑
j=−T+1

k

(
j

BT

)
− BT

T

1

T

T−1∑
j=−T+1

(1 + |j|)
BT

k

(
j

BT

)

=

(
BT
T

)
1

BT

T−1∑
j=−T+1

k

(
j

BT

)
︸ ︷︷ ︸

→
∫∞
−∞ k(x)<∞

[
1− 1

T

]
−
(
BT
T

)2 1

BT

T−1∑
j=−T+1

|j|
BT

k

(
j

BT

)
︸ ︷︷ ︸

→
∫∞
−∞ |x|k(x)|<∞

= o(1),

since BT → ∞ such that BT /T → 0. By Assumption 1, k ((τ1 − τ2)/b) → 0 for any τ1 and τ2,
and this enables us to apply dominated convergence theorem and obtain∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2 =

∫ 1

0

∫ 1

0
k

(
τ1 − τ2

b

)
dτ1dτ2

= o(1).

Similarly, for part (b), we have

1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2 =

1

T

T∑
τ=1

k

(
t− τ
ST

)
−
∫ 1

0
k

(
t/T − τ2

b

)
dτ2

=
ST
T
× 1

ST

T∑
τ=1

k

(
t− τ
ST

)
−
∫ 1

0
k

(
t

T b
− τ2

b

)
dτ2

≤ ST
T
× 1

ST

∞∑
j=−∞

∣∣∣∣k( j

ST

)∣∣∣∣+ o(1)

= o(1).

28



For part (c),

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
=

1

T

T∑
t=1

k

(
t− τ
ST

)
−
∫ 1

0
k

(
τ1 − τ/T

b

)
dτ1 −

1

T

T∑
t=1

∫ 1

0
k

(
t/T − τ2

b

)
dτ2

+

∫ 1

0

∫ 1

0
k

(
τ1 − τ2

b

)
dτ1dτ2

=
1

T

T∑
t=1

k

(
t− τ
ST

)
−
∫ 1

0
k

(
τ1 − τ/T

b

)
dτ1 + o(1)

= o(1),

where the last equation follows by the proof of (b).
Next, we consider the case of the OS-LRV with Qh(r, s) = K−1

∑K
j=1 Φj(r)Φj(s) and K →∞

such that K/T → 0. Then, the result of part (a) follows by

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
)−

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2

=
1

T 2

T∑
τ1=1

T∑
τ2=1

 1

K

K∑
j=1

Φj

(τ1

T

)
Φj

(τ2

T

)− 1

K

K∑
j=1

(∫ 1

0
Φj(τ1)dτ1

)(∫ 1

0
Φj(τ2)dτ2

)

=
1

K

K∑
j=1

(
1

T

T∑
τ1=1

Φj

(τ1

T

))( 1

T

T∑
τ2=1

Φj

(τ2

T

))

=
1

K

K∑
j=1

(∫ 1

0
Φj (τ1) dτ1 +O

(
1

T

))(∫ 1

0
Φj (τ2) dτ2 +O

(
1

T

))

= O

(
1

T 2

)
= o(1),

since
∫ 1

0 Φj (τ) dτ = 0 by Assumption 1. Part (b) follows in a similar manner since

1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2 =

1

T

T∑
τ=1

1

K

K∑
j=1

Φj

( τ
T

)
−
∫ 1

0

1

K

K∑
j=1

Φj

(
t

T

)
Φj (τ2) dτ2

=
1

K

K∑
j=1

Φj

(
t

T

)(
1

T

T∑
τ=1

Φj

( τ
T

))

− 1

K

K∑
j=1

Φj

(
t

T

)(∫ 1

0
Φj (τ2) dτ2

)

=
1

K

K∑
j=1

Φj

(
t

T

)(∫ 1

0
Φj(r)dr +O

(
1

T

))

= O

(
1

T

)
= o(1).
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Lastly, it is straightforward to check that Q∗h
(
t
T ,

τ
T

)
= Qh

(
t
T ,

τ
T

)
due to

∫ 1
0 Φj (τ) dτ = 0. There-

fore,

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
=

1

T

T∑
t=1

 1

K

K∑
j=1

Φj

(
t

T

)
Φj

( τ
T

)
=

1

K

K∑
j=1

(
1

T

T∑
t=1

Φj

(
t

T

))
Φj

( τ
T

)
= O

(
1

T

)
= o(1).

Lemma 5 Under Assumptions 1—5, for any θ̂ = θ0 +Op(1/
√
T ),

Υj(θ̂) = Υ∗j (θ̂) + op(1)

holding h fixed as T →∞, or h→∞ such that h/T → 0.

Proof of Lemma 5. We first consider the case that h is fixed when T → ∞. For each
j = 1, . . . , d,∥∥∥Υ∗j (θ̂)−Υj(θ̂)

∥∥∥ (30)

=

∥∥∥∥∥−
[

1

T

T∑
t=1

T∑
s=1

eT (s)gj(vt, θ̂)f(vs, θ̂)
′

]
−
[

1

T

T∑
t=1

T∑
s=1

eT (t)gj(vt, θ̂)f(vs, θ̂)
′

]

+

[
1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
)−

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2

][
1

T

T∑
t=1

T∑
s=1

gj(vt, θ̂)f(vs, θ̂)
′

]∥∥∥∥∥
≤

∥∥∥∥∥ 1√
T

T∑
t=1

gj(vt, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=A

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)f(vs, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=B

+

∥∥∥∥∥ 1√
T

T∑
s=1

f(vs, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=C

∥∥∥∥∥ 1√
T

T∑
t=1

eT (t)gj(vt, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=D

+O

(
1

T

)∥∥∥∥∥ 1√
T

T∑
t=1

gj(vt, θ̂)

∥∥∥∥∥
∥∥∥∥∥ 1√

T

T∑
s=1

f(vs, θ̂)
′

∥∥∥∥∥ ,
where

eT (t) =
1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2.

Note that eT (t) = O(1/T ) = o(1) uniformly over t for fixed h from Assumption 1. From the proof
of Lemma 1-(a) in Sun (2014), we obtain

B = Op

(
1

T

)
and C = Op (1) . (31)
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For each j = 1, . . . , d, we apply mean value theorem to the term A and obtain

1√
T

T∑
t=1

gj(vt, θ̆T ) =
1√
T

T∑
t=1

gj(vt, θ0) +HT,j(θ̄
∗
T,j)
√
T (θ̆T − θ0) = Op(1) (32)

for some θ̄∗T,j which is between θ̂ and θ0. For the term D,

1√
T

T∑
t=1

eT (t)gj(vt, θ̂) =
1√
T

T∑
t=1

eT (t)gj(vt, θ0) +
1

T

T∑
t=1

eT (t)
∂gj(vt, θ̄

∗
T,j)

∂θ′
√
T (θ̂ − θ0)

=
1√
T

T∑
t=1

eT (t)gj(vt, θ0) +
1

T

T∑
t=1

[eT (t)− eT (t+ 1)] (33)

×Ht,j(θ̄
∗
T,j)
√
T (θ̂ − θ0) + eT (T )HT,j(θ̄

∗
T,j)
√
T (θ̂ − θ0),

where the second equation follows from summation by parts. For the last term in (33),

eT (T )HT,j(θ̄
∗
T,j)
√
T (θ̂ − θ0) = Op

(
1

T

)
by Assumptions 1 and 4. For any m-dimensional vector a,

E

( 1√
T

T∑
t=1

eT (t)a′gj(vt, θ0)

)2


=
1

T

T∑
s=1

T∑
t=1

eT (t)a′E
[
gj(vt, θ0)gj(vs, θ0)′

]
aeT (s)

≤
(

sup
1≤t≤T

eT (t)

)2
1

T

T∑
s=1

T∑
t=1

a′E
[
gj(vt, θ0)gj(vs, θ0)′

]
a

≤ O

(
1

T 2

) ∞∑
i=−∞

|a′Ψj,ia| ≤ O
(

1

T 2

)
||a||2

∞∑
i=−∞

||Ψj,i|| = O

(
1

T 2

)
by Assumption 5. Together with Markov inequality, this leads us to get

1√
T

T∑
t=1

eT (t)gj(vt, θ0) = Op

(
1

T

)
.

Let us define εj,t = Ht,j(θ̄
∗
T,j) − (t/T )Hj for each j = 1, . . . , d. By Assumption 4, εj,t is op(1)

uniformly over t. The second term in (33) can be written as

1

T

T∑
t=1

[eT (t)− eT (t+ 1)]HT,j(θ̄
∗
T,j)
√
T (θ̂ − θ0)

=
1

T

T∑
t=1

[eT (t)− eT (t+ 1)]εj,t
√
T (θ̂ − θ) +

1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]tHj

√
T (θ̂ − θ0)

=
1

T

T∑
t=1

[eT (t)− eT (t+ 1)]εj,t
√
T (θ̂ − θ) +

1

T

T−1∑
t=1

eT (t)Hj

√
T (θ̂ − θ0)− eT (T )Hj

√
T (θ̂ − θ0)

= Op

(
1

T

)
,
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where the last equation follows by
√
T (θ̂−θ) = Op(1), sup1≤t≤T εj,t = op(1), and sup1≤t≤T eT (t) =

O(1/T ), which leads us to D = Op (1/T ) . Combining this together with (31) and (32) into (30),

Υj(θ̂) = Υ∗j (θ̂) +Op

(
1

T

)
(34)

= Υ∗j (θ̂) + op (1) (35)

which is the desired result.
Now, we consider the case when h → ∞ such that h/T → 0. Using parts (a) and (b) in

Lemma 4, we obtain that

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
)−

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2 = o(1); (36)

sup
1≤t≤T

eT (t) = o(1) (37)

also holds when h → ∞ such that h/T → 0. A careful inspection of the proof when h is fixed
as T →∞ indicates that (36) and (37) are the necessary conditions for 35 to hold when h→∞
such that h/T → 0, which completes the proof.

Lemma 6 Define St(C) = T−1
∑t

s=1Cs t = 0, 1, . . . , T with S0(C) = 0 for a generic sequence
of matrices {Ct}. Then, for any two sequence of matrices {At} and {Bt},

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

=
T−1∑
τ=1

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
St(A)S′τ (B) +

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
St(A)ST (B)′

+
T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
ST (A)S′τ (B) +Q∗h (1, 1)ST (A)S′T (B),

where

5Q∗h
(
t

T
,
τ

T

)
:= Q∗h

(
t

T
,
τ

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
+Q∗h

(
t+ 1

T
,
τ + 1

T

)
.

Proof Lemma of 6. We use the formula of summation by part:

1

T

T∑
t=1

atb
′
t =

1

T
aTC

′
T −

1

T

T−1∑
t=1

(at+1 − at)C ′t where Ct =
t∑

s=1

bs (38)

for any conformable vectors at and bt. Consider

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ =

1

T

T∑
τ=1

(
1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
At

)
B′τ . (39)
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We first apply the formula in (38) to the term inside the bracket by setting at = Q∗h(t/T, τ/T ),
bt = At, and Ct =

∑t
s=1As. Then,

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
At

= Q∗h

(
1,
τ

T

)( 1

T

T∑
s=1

As

)
−
T−1∑
t=1

(
1

T

T∑
s=1

As

)[
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)]
for each τ = 1, . . . , T. Combining this into (39), we have

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

=
1

T

T∑
τ=1

Q∗h

(
1,
τ

T

)
ST (A)B′τ −

T−1∑
t=1

St(A)

[
1

T

T∑
τ=1

{
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)}
B′τ

]
.(40)

We repeat to apply the formula in (38) to the terms in the right-handside. For the first term,
setting aτ = Q∗h

(
1, τT

)
ST (A), bτ = B′τ , and Cτ =

∑τ
s=1B

′
s, we obtain

1

T

T∑
τ=1

Q∗h

(
1,
τ

T

)
ST (A)B′τ

= Q∗h (1, 1)ST (A)ST (B)′ −
T−1∑
τ=1

Q∗h

(
1,
τ + 1

T

)
−Q∗h

(
1,
τ

T

)
ST (A)Sτ (B)′

For the terms inside the bracket of the second term, set aτ = Q∗h
(
t+1
T , τT

)
−Q∗h

(
t
T ,

τ
T

)
, bτ = B′τ ,

and Cτ =
∑τ

s=1B
′
s, we get

1

T

T∑
τ=1

{
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)}
B′τ

=

[
Q∗h

(
t+ 1

T
, 1

)
−Q∗h

(
t

T
, 1

)]
ST (B)′ −

T−1∑
τ=1

[
Q∗h

(
t+ 1

T
,
τ + 1

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
+Q∗h

(
t

T
,
τ

T

)]
Sτ (B)′.
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Combining these results into (40), we obtain

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

= Q∗h (1, 1)ST (A)ST (B)′ −
T−1∑
τ=1

[
Q∗h

(
1,
τ + 1

T

)
−Q∗h

(
1,
τ

T

)]
ST (A)Sτ (B)′

−
T−1∑
t=1

St(A)

[
Q∗h

(
t+ 1

T
, 1

)
−Q∗h

(
t

T
, 1

)]
ST (B)′ +

T−1∑
t=1

St(A)
T−1∑
τ=1

[
Q∗h

(
t+ 1

T
,
τ + 1

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
+Q∗h

(
t

T
,
τ

T

)]
Sτ (B)′

=
T−1∑
t=1

T−1∑
τ=1

5Q∗h
(
t

T
,
τ

T

)
St(A)Sτ (B)′ +

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
St(A)ST (B)′

+
T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
ST (A)Sτ (B)′ +Q∗h (1, 1)ST (A)ST (B)′,

as desired.
Proof of Lemma 1. For each j = 1, ..., d, we have

Dθ̂2,ST (θ̂1)[., j] = (G′TS
−1
T (θ̂1)GT )−1G′TS

−1
T (θ̂1)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)fT (θ̂2)

= (G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)fT (θ̂2)(1 + op(1)),

where the second equality holds by (8). Using a Taylor expansion, we have

fT (θ̂2) = fT (θ0)−GT
{
G′TS

−1
T (θ0)GT

}−1
G′TS

−1
T (θ0)fT (θ0)(1 + op(1))

Thus,

Dθ̂2,ST (θ̂1)[., j] =
{
G′TS

−1
T (θ0)GT

}−1
G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)fT (θ0)(1 + op(1))

−
{
G′TS

−1
T (θ0)GT

}−1
G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)GT

×
{
G′TS

−1
T (θ0)GT

}−1
G′TS

−1
T (θ0)fT (θ0)

}
(1 + op(1)),

for each j = 1, ..., d. For the term, ∂ST (θ)
∂θj

∣∣∣
θ=θ̂1

, recall that

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1);

Υj(θ) =
1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)

(
gj(vt, θ)−

1

T

T∑
τ=1

gj(vτ , θ)

)(
f(vs, θ)−

1

T

T∑
τ=1

f(vτ , θ)

)′
;

gj(vs, θ) =
∂f(vs, θ)

∂θj
.
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We want to show that
Υj(θ̂1) = Υj(θ0) + op(1). (41)

We first consider the case in which h is fixed as T →∞. For some θ̄∗T,j and θ̆
∗
T which are between

θ̂1 and θ0,we have

Υ∗j (θ̂1) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
gj(vt, θ̂1)f(vs, θ̂1)′

=
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)(
gj(vt, θ0) +

∂gj(vt, θ̄
∗
T,j)

∂θ′
(θ̂1 − θ0)

)

×
(
f(vs, θ0) +

∂f(vs, θ̆
∗
T )

∂θ′
(θ̂1 − θ0)

)′
= Υ∗j (θ0) + I1 + I2 + I3,

where

I1 =
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)(
∂gj(vt, θ̄

∗
T,j)

∂θ′
(θ̂1 − θ0)

)
f(vτ , θ0)′;

I ′2 =
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)(
∂f(vt, θ̆

∗
T )

∂θ′
(θ̂1 − θ0)

)
gj(vτ , θ0)′;

I3 =
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)(
∂gj(vt, θ̄

∗
T,j)

∂θ′
(θ̂1 − θ0)

)[
∂f(vτ , θ̆

∗
T )

∂θ′
(θ̂1 − θ0)

]′

for each j = 1, . . . , d. Let us define εj,t = Ht,j(θ̄
∗
T,j)−(t/T )Hj for each j = 1, . . . , d. By Assumption

4, εj,t is op(1) uniformly over t. From Lemma 6, we can write I1, setting At =
∂gj(vt,θ̄

∗
T,j)

∂θ′
(θ̂1− θ0)

and Bτ = uτ := f(vτ , θ0), as follows

I1 = Hj(θ̂1 − θ0)
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
u′τ + TQ∗h(1, 1)εj,T (θ̂1 − θ0)S′T (u)

+T

T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
εj,T (θ̂1 − θ0)S′τ (u)

+T

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
εj,t(θ̂1 − θ0)S′T (u)

+T

T−1∑
τ=1

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
εj,t(θ̂1 − θ0)S′τ (u)

I1 : = I11 + I12 + I13 + I14 + I15.
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We want to show that each of I1i for i = 1, . . . 5 is op(1) as T →∞ holding h fixed. For I11, there
exists a finite M > 0 which does not depend on t such that

‖I11‖ =

∥∥∥∥∥Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

[
1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)]
u′τ

∥∥∥∥∥ (42)

=

∥∥∥∥∥Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

[∫ 1

0
Q∗h

(
r,
τ

T

)
dr +O

(
1

T

)]
u′τ

∥∥∥∥∥
≤ M

T

∥∥∥∥∥
(
Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

u′τ

)∥∥∥∥∥
= Op

(
1

T

)
= op(1),

where the inequality follows by
∫ 1

0 Q
∗
h

(
r, τT

)
dr = 0. It is easy to check I12 = op(1) from εj,T =

Op(1). Next, we consider I13. By summation by parts,

I13 = T
T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
εj,T (θ̂1 − θ0)S′τ (u)

= εj,T
√
T (θ̂1 − θ0)

[
1√
T

T∑
τ=1

Q∗h

(
1,
τ

T

)
uτ

]
−εj,T

√
T (θ̂1 − θ0)Q∗h (1, 1)S′T (u)

= op(1),

which follows by the boundedness of the function Q∗h (·, ·) and εj,T = op(1). For I14,

‖I14‖ =

∥∥∥∥∥T
T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
εj,t(θ̂1 − θ0)S′T (u)

∥∥∥∥∥
≤

∥∥∥∥∥
T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
εj,t

∥∥∥∥∥∥∥∥√T (θ̂1 − θ0)
∥∥∥∥∥∥√TS′T (u)

∥∥∥
≤ sup

1≤t≤T
||εj,t||

∥∥∥∥∥
T−1∑
t=1

Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)∥∥∥∥∥×Op(1)

= op(1)

∣∣∣∣Q∗h( 1

T
, 1

)
−Q∗h (1, 1)

∣∣∣∣ = op(1).

Lastly, we re-express the term I15

‖I15‖ =

∥∥∥∥∥T
T−1∑
τ=1

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
εj,t(θ̂1 − θ0)S′τ (u)

∥∥∥∥∥ (43)

≤ sup
1≤t≤T

||εj,t||
∥∥∥∥∥
T−1∑
τ=1

[
T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)]√
T (θ̂1 − θ0)

√
TS′τ (u)

∥∥∥∥∥ .
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For each τ = 1, . . . , T,

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)

=
T−1∑
t=1

[
Q∗h

(
t

T
,
τ

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)]
−
T−1∑
t=1

[
Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ + 1

T

)]
=

[
Q∗h

(
1

T
,
τ

T

)
−Q∗h

(
1,
τ

T

)]
−
[
Q∗h

(
1

T
,
τ + 1

T

)
−Q∗h

(
1,
τ + 1

T

)]
=

[
Q∗h

(
1

T
,
τ

T

)
−Q∗h

(
1

T
,
τ + 1

T

)]
−
[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
.

Using this, we re-express the upper bound of ‖I15‖ in (43) by

sup
1≤t≤T

||εj,t||
∥∥∥∥∥
T−1∑
τ=1

[
T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)]√
T (θ̂1 − θ0)

√
TS′τ (u)

∥∥∥∥∥
≤ sup

1≤t≤T
||εj,t|| ×

∣∣∣∣∣
T−1∑
τ=1

[
Q∗h

(
1

T
,
τ

T

)
−Q∗h

(
1

T
,
τ + 1

T

)]
−
[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]∣∣∣∣∣
×
∥∥∥√T (θ̂1 − θ0)

∥∥∥∥∥∥∥ max
1≤τ≤T

√
TS′τ (u)

∥∥∥∥
= op(1)×

∣∣∣∣[Q∗h( 1

T
,

1

T

)
−Q∗h

(
1

T
, 1

)]
−
[
Q∗h

(
1,

1

T

)
−Q∗h (1, 1)

]∣∣∣∣×Op(1)

= op(1),

where the second last equation follows by the FCLT and continuous mapping theorem. We have
therefore showed that I1 = op(1). The proofs of I2 = op(1) and I3 = op(1) can be done in a very
similar manner, and we omit the details. Finally, we obtain that

Υ∗j (θ̂1) = Υ∗j (θ0) + op(1) (44)

= Υ∗j (θ0)(1 + op(1)).

Using the result in Lemma 5, we obtain

Υ∗j (θ̂1) = Υj(θ̂1)(1 + op(1)) and Υ∗j (θ0) = Υj(θ0)(1 + op(1)),

which implies Υj(θ̂1) = Υj(θ0)(1 + op(1)) for each j = 1, . . . , d. From this result, it is straightfor-
ward to obtain

Dθ̂2,ST (θ̂1) = Dθ0,ST (θ0)(1 + op(1)), (45)

which is the desired result.
Now, we consider the case when h→∞ such that h/T → 0. A careful inspection of the proof

when h is fixed as T → ∞ indicates that the necessary condition for (44) to hold is provided in
part (c) of Lemma 4,which can be used in (42) to obtain the desired result.
Proof of Theorem 2. We only prove part (b), as the proof of (a) can be done in the same
way. Now, define the infeasible finite-sample corrected variance

v̂arinfc (θ̂2) = v̂ar(θ̂2) +
1

T
Dθ0,ST (θ0)v̂ar(θ̂2)

+
1

T
v̂ar(θ̂2)D′θ0,ST (θ0) +Dθ0,ST (θ0)v̂ar(θ̂1)D′θ0,ST (θ0),
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with corresponding statistics

F infc (θ̂2) =
1

p
(Rθ̂2 − r)′

[
Rv̂arinfc (θ̂2)R′

]−1
(Rθ̂2 − r).

Then, the result in (45) implies v̂arc(θ̂2) = v̂arinfc (θ̂2)(1+op(1)). Thus the corresponding infeasible
Wald statistic satisfies

Fc(θ̂2) = F infc (θ̂2)(1 + op(1))

Also, Dθ0,ST (θ0) = op(1) implies

v̂arinfc (θ̂2) = v̂ar(θ̂2)(1 + op(1)),

and this leads us to get

Fc(θ̂2) = F infc (θ̂2)(1 + op(1))

= F (θ̂2) + op(1),

as desired.
Proof of Theorem 3. Define the modified t and Wald statistics using t(θ̂2) and F (θ̂2) as

t̃(θ̂2) : =
K − q
K

· t(θ̂2)√
1 + 1

KJ(θ̂2)
;

F̃ (θ̂2) : =
K − p− q + 1

K
· F (θ̂2)

1 + 1
KJ(θ̂2)

,

Under Assumptions 2—6, we can apply Theorem 1in Hwang and Sun (2017), and have that

t̃(θ̂2)
d→ tp,K−p−q+1 and F̃ (θ̂2)

d→ Fp,K−p−q+1

for a fixed K as T →∞. By Theorem 2,

t̃c(θ̂2) = t̃(θ̂2) + op(1) and F̃c(θ̂2) = F̃ (θ̂2) + op(1),

and this gives us the desired results

t̃c(θ̂2)
d→ tK−p−q+1 and F̃c(θ̂2)

d→ Fp,K−p−q+1.
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