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Abstract

This paper develops a new asymptotic theory for GMM estimation and inference in the
presence of clustered dependence. The key feature of alternative asymptotics is the number of
clusters G is regarded as fixed when the sample size increases. Under the fixed-G asymptotics,
we show that Wald and t-tests in two-step GMM are asymptotically pivotal only if we recenter
the estimated moment process in clustered covariance estimator (CCE). Also, the J statistic,
the trinity of two-step GMM statistics (QLR, LM, and Wald), and the t statistic can be
modified to have an asymptotic standard F distribution or t distribution. We suggest a finite
sample variance correction to further improve the accuracy of the F and t approximations.
Our proposed tests are very appealing to practitioners because our test statistics are simple
modifications of the usual test statistics, and critical values are readily available from standard
statistical tables. No further simulations or re-sampling methods are needed. A Monte Carlo
study shows that our proposed tests are more accurate than the conventional inferences under
the large-G asymptotics.
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1 Introduction

Clustering is a common feature for many cross-sectional and panel data sets in applied economics.
The data often come from a number of independent clusters with a general dependence structure
within each cluster. For example, in development economics, data are often clustered by geo-
graphical regions, such as village, county and province, and, in empirical finance and industrial
organization, firm level data are often clustered at the industry level. Because of learning from
daily interactions, the presence of common shocks, and for many other reasons, individuals in
the same cluster will be interdependent while those from different clusters tend to be indepen-
dent. Failure to control for within group or cluster correlation often leads to downwardly biased
standard errors and spurious statistical significance.

Seeking to robustify inference, many practical methods employ clustered covariance estima-
tors (CCE). See White (1984, Theorem 6.3, p. 136), Liang and Zeger (1986), Arellano (1987) for
seminal methodological contributions, and Wooldridge (2003) and Cameron and Miller (2015)
for overviews of the CCE and its applications. It is now well known that standard test statis-
tics based on the CCE are either asymptotically chi-squared or normal. The chi-squared and
normal approximations are obtained under the so-called large-G asymptotic specification, which
requires the number of clusters G to grow with the sample size. The key ingredient behind these
approximations is that the CCE becomes concentrated at the true asymptotic variance as G
approaches to infinity. In effect, this type of asymptotics ignores the estimation uncertainty in
the CCE despite its high variation in finite samples, especially when the number of clusters is
small. In practice, however, it is not unusual to have a data set that has a small number of
clusters. For example, if clustering is based on large geographical regions such as U.S. states
and regional blocks of neighboring countries, (e.g., Bertrand, Duflo, and Mullainathan, 2004;
Ibragimov and Müller, 2015), we cannot convincingly claim that the number of cluster is large
so that the large-G asymptotic approximations are applicable. In fact, there is ample simulation
evidence that the large-G approximation can be very poor when the number of clusters is not
large (e.g., Donald and Lang, 2007; Cameron, Gelbach, and Miller, 2008; Bester, Conley, and
Hansen, 2011; Mackinnon and Webb, 2017).

In this paper, we adopt an alternative approach that yields more accurate approximations,
and that works well whether or not the number of clusters is large. Our approximations work
especially well when the chi-squared and normal approximations are poor. They are obtained
from an alternative limiting thought experiment where the number of clusters G is held fixed.
Under this fixed (small)-G asymptotics, the CCE no longer asymptotically degenerates; instead, it
converges in distribution to a random matrix that is proportional to the true asymptotic variance.
The random limit of the CCE has profound implications for the analyses of the asymptotic
properties of GMM estimators and the corresponding test statistics.

We start with the first-step GMM estimator where the underlying model is possibly over-
identified and show that suitably modified Wald and t statistics converge weakly to standard F
and t distributions, respectively. The modification is easy to implement because it involves only
a known multiplicative factor. Similar results have been obtained by Hansen (2007) and Bester,
Conley and Hansen (2011), which employ a CCE type HAC estimator but consider only linear
regressions and M -estimators for an exactly identified model.

We then consider the two-step GMM estimator that uses the CCE as a weighting matrix.
Because the weighting matrix is random even in the limit, the two-step estimator is not asymp-
totically normal. The form of the limiting distribution depends on how the CCE is constructed. If
the CCE is based on the uncentered moment process, we obtain the so-called uncentered two-step
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GMM estimator. We show that the asymptotic distribution of this two-step GMM estimator is
highly nonstandard. As a result, the associated Wald and t statistics are not asymptotically piv-
otal. However, it is surprising that the J statistic is still asymptotically pivotal, and its limiting
distribution can be represented as an increasing function of a standard F random variable.

Next, we establish the asymptotic properties of the “centered” two-step GMM estimator1

whose weighting matrix is constructed using recentered moment conditions. Invoking centering
is not innocuous for an over-identified GMM model because the empirical moment conditions, in
this case, are not equal to zero in general. Under the traditional large-G asymptotics, recentering
does not matter in large samples because the empirical moment conditions are asymptotically
zero and here are ignorable, even though they are not identically zero in finite sample. In contrast,
under the fixed-G asymptotics, recentering plays two important roles: it removes the first order
effect of the estimation error in the first-step estimator, and it ensures that the weighting matrix
is asymptotically independent of the empirical moment conditions. With the recentered CCE as
the weighting matrix, the two-step GMM estimator is asymptotically mixed normal. The mixed
normality reflects the high variation of the feasible two-step GMM estimator as compared to the
infeasible two-step GMM estimator, which is obtained under the assumption that the ‘effi cient’
weighing matrix is known. The mixed-normality allows us to construct the Wald and t statistics
that are asymptotically nuisance parameter free.

To relate the nonstandard fixed-G asymptotic distributions to standard distributions, we
introduce simple modifications to the Wald and t statistics associated with the centered two-
step GMM estimator. We show that the modified Wald and t statistics are asymptotically F
and t distributed, respectively. This result resembles the corresponding result that is based on
the first-step GMM estimator. It is important to point out that the proposed modifications are
indispensable for our asymptotic F and t theory. In the absence of the modifications, the Wald
and t statistics converge in distribution to nonstandard distributions, and as a result, critical
values have to be simulated. The modifications involve only the standard J statistic, and it is
very easy to implement because the modified test statistics are scaled versions of the original Wald
test statistics with the scaling factor depending on the J statistic. Significantly, the combination
of the Wald statistic and the J statistic enables us to develop the F approximation theory. We
also find that the uncentered continuously updating (CU) GMM estimators and the centered
two-step GMM estimator are asymptotically equivalent under the fixed-G asymptotics. Thus,
the CU estimators can be regarded as having a built-in recentering mechanism similar to the
centered two-step GMM estimator.

Finally, although the recentering scheme removes the first order effect of the first-step es-
timation error, the centered two-step GMM still face some extra estimation uncertainty in the
first-step estimator. The main source of the problem is that we have to estimate the unobserved
moment process based on the first-step estimator. To capture the higher order effect, we propose
to retain one more term in our stochastic approximation that is asymptotically negligible. The
expansion helps us develop a finite sample correction to the asymptotic variance estimator. Our
correction resembles that of Windmeijer (2005), which considers variance correction for a two-
step GMM estimator but valid only in an i.i.d. setting. We show that the finite sample variance
correction does not change the fixed-G limiting distributions of the test statistics, but they can
help improve the finite sample performance of our tests.

Monte Carlo simulations show that our new tests have a much more accurate size than existing

1Our definition of the centered two-step GMM estimator is originated from the recentered (or demeaned) GMM
weighting matrix, and it should not be confused with “centering”the estimator itself.
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tests via standard normal and chi-squared critical values, especially when the number of clusters
G is not large. An advantage of our procedure is that the test statistics do not entail much extra
computational cost because the main ingredient for the modification is the usual J statistic.
There is also no need to simulate critical values because the F and t critical values can be readily
obtained from standard statistical tables.

Our fixed-G asymptotics is related to fixed-smoothing asymptotics for a long run variance
(LRV) estimation in a time series setting. The latter was initiated and developed in econometric
literature by Kiefer, Vogelsang and Bunzel (2002), Kiefer and Vogelsang (2005), Müller (2007),
Sun, Phillips and Jin (2008), Sun (2013, 2014), Zhang (2016), among others. Our new asymptotics
is in the same spirit in that both lines of research attempt to capture the estimation uncertainty
in covariance estimation.

A recent paper by Hwang and Sun (2017a) also modifies the two-step GMM statistics using
the J statistic. The F and t limit theory in Hwang and Sun (2017a) is seemingly similar to
those presented in this paper. However, our asymptotic theory differs from Hwang and Sun
(2017a), as it delivers the following sophistication in the CCE-type HAR inference−we can have
asymptotically pivotal Wald and t inferences only if we use the centered CCE in the test statistics.
We explicitly show that the uncentered two-step test statistics result in highly non-standard and
non-pivotal fixed-G limits. This sophistication does not appear in the asymptotics of Hwang and
Sun (2017), because its zero-mean basis functions yield the same limiting distributions regardless
of using centered or uncentered HAR estimators. The cluster-robust limiting distributions in our
paper also differ from those of Hwang and Sun (2017) in terms of the multiplicative adjustment
and the degrees of freedom. Moreover, we propose a finite sample variance correction to capture
the uncertainty embodied in the estimated moment process adequately. To our knowledge, the
finite sample variance correction provided in this paper ant its first order asymptotic validity has
not been considered in the literature on the fixed-smoothing asymptotics.

There is also a growing literature that uses the fixed-G asymptotics to design more accurate
cluster-robust inference. For instance, Ibragimov and Müller (2010, 2016) recently proposes a
subsample based t test for a scalar parameter that is robust to heterogeneous clusters. Hansen
(2007), Stock and Watson (2008), and Bester, Conley and Hansen (2011) propose a cluster-robust
F or t tests under cluster-size homogeneity. Imbens and Kolesár (2016) suggest an adjusted t
critical value employing data-determined degrees of freedom. Recently, Canay, Romano and
Shaikh (2017) and Canay, Santos, and Shaikh (2019), Hagemann (2019) establish a theory of
randomization inferences in the context of clustered dependence. For other approaches, see
Carter, Schnepel and Steigerwald (2017) which proposes a measure of the effective number of
clusters under the large-G asymptotics; Cameron, Gelbach and Miller (2008), MacKinnon and
Webb (2017), and Djogbenou, MacKinnon, and Nielsen (2019) which investigate cluster-robust
bootstrap approaches. All these studies, however, mainly focus on a simple location model or
linear regressions that are special cases of exactly identified models. A recent contribution which
develops a large-G cluster asymptotic distribution theory is Hansen and Lee (2019).

The remainder of the paper is organized as follows. Section 2 presents the basic setting
and establishes the approximation results for the first-step GMM estimator under the fixed-G
asymptotics. Sections 3 and 4 establish the fixed-G asymptotics for two-step GMM estimators and
develop the asymptotic F and t tests based on the centered two-step GMM estimator. Section 5
proposes a finite sample variance correction. The next two sections reports a simulation evidence
and applies our cluster-robust tests to an empirical study in Emran and Hou (2013). The last
section concludes. Proofs the main results are given in Appendix A, and online supplemental
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Appendix B available at the author’s website2 contains extensions of theories, e.g., clustered
dependence in a spatial setting, asymptotically unbalanced sizes in clusters, LM and QLR type
GMM tests and continuously updating GMMs, and omitted proofs in the main text.

2 Basic Setting and the First-step GMM Estimator

We want to estimate the d × 1 vector of parameters θ ∈ Θ. The true parameter vector θ0

is assumed to be an interior point of parameter space Θ ⊆ Rd. Suppose that we observe cross-
sectionally dependent triangular array of random vectors Yi,n ∈ Rdy for i = 1, . . . , n, which satisfy
the following moment condition

Ef(Yi,n, θ) = 0 if and only if θ = θ0, (1)

where fi,n(θ) = f(Yi,n, θ) is an m × 1 vector of twice continuously differentiable functions.
Throughout the paper, we suppress the dependence of n on Yi,n and fi,n(θ) for notational sim-
plicity. We assume that q = m−d ≥ 0 and the rank of Γ = E

[
∂f(Yi, θ0)/∂θ′

]
is d. So the model

is possibly over-identified with the degree of over-identification q. The number of observations
is n. Define gn(θ) = n−1

∑n
i=1 fi(θ). Given the moment condition in (1), the initial “first-step”

GMM estimator of θ0 is given by

θ̂1 = arg min
θ∈Θ

gn(θ)′W−1
n gn(θ),

where Wn is an m×m positive definite and a symmetric weighting matrix that does not depend
on the unknown parameter θ0 and plimn→∞Wn = W > 0. In the context of instrumental vari-
able (IV) regression, one popular choice for Wn is (Z ′nZn/n)−1 where Zn is the data matrix of
instruments.

Let Γ̂(θ) = n−1
∑n

i=1
∂fi(θ)
∂θ′

. To establish the asymptotic properties of θ̂1, we assume that for

any
√
n-consistent estimator θ̃, plimn→∞Γ̂(θ̃) = Γ and that Γ is of full column rank. Also, under

some regularity conditions, we have the following Central Limit Theorem (CLT)

√
ngn(θ0)

d→ N(0,Ω), where

Ω = lim
n→∞

1

n
E

(
n∑
i=1

fi(θ0)

)(
n∑
i=1

fi(θ0)

)′
.

Here Ω is analogous to the long run variance in a time series setting but the components of Ω
are contributed by cross-sectional dependences over all locations. For easy reference, we follow
Sun and Kim (2015) and call Ω the global variance. Primitive conditions for the above CLT in
the presence of weak cross-sectional dependence are provided in supplementary Appendix B.1 of
the paper. Under these conditions, we have

√
n(θ̂1 − θ0)

d→ N
[
0, (Γ′W−1Γ)−1Γ′W−1ΩW−1Γ(Γ′W−1Γ)−1

]
.

Since Γ and W can be accurately estimated by Γ̂(θ̂1) and Wn relative to Ω, we only need to
estimate Ω to make reliable inference about θ0. The main issue is how to properly account for

2https://hwang.econ.uconn.edu/wp-content/uploads/sites/1837/2020/04/Supplemental_Appendix_
Hwang_March_2020.pdf
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cross-sectional dependence in the moment process {fj(θ0)}nj=1. In this paper, we assume that
the cross-sectional dependence has a cluster structure, which is popular in many microeconomic
applications. More specifically, our data consists of a number of independent clusters, each of
which has an unknown dependence structure. Let G be the total number of clusters and Lg be
the size of cluster g.

Assumption 1 (i) The data {Yi}ni=1 consists of G clusters. (ii) The number of clusters G is
fixed, and the size of each cluster Lg →∞ with the total sample size n→∞

1√
L1

∑L1
i=1 f

1
i (θ0)

...
1√
LG

∑LG
i=1 f

G
i (θ0)

 d→ N

0,

 Ω1 0
. . .

0 ΩG


 , (2)

where Ωg is positive definite for g = 1, . . . , G. (iii) The cluster sizes are approximately equal,
Lg/L̄→ 1 with L̄ = G−1

∑G
g=1 Lg for every g = 1, ..., G.

Assumption 1-i) implies that the set {fi(θ0)}ni=1 can be partitioned into G nonoverlapping
clusters, i.e. {fi(θ0)}ni=1 = ∪Gg=1{f

g
i (θ0)}Lgi=1, where the notation in fgi (θ0) indicates the i-th

individual in the cluster g which has size Lg. Together with Assumption-i), Assumption 1-ii)
assumes that the cluster structure permits the application of joint CLT to the G number of
cluster-wise sums. The joint CLT condition is a key device to study a valid inference in our
settings where the number of clusters is fixed, but the number of observations per cluster grows
with the same rate as the total number of observations increase. It also characterizes the choice of
clusters to be asymptotically independent, and the within-cluster dependence is suffi ciently weak
to apply a suitable cross-sectional central limit theorem. Note that unlike the literature in large-
G asymptotics3, our Assumption 1-ii) does not restrict that the clustered data are independent
across different clusters.

As one example of the primitive conditions for the joint CLT, supplementary Appendix B.1
considers a spatial mixing setting in Conley (1999), Jenish and Prucha (2009, 2012) and assumes
that the number of observations located on the boundaries between two different clusters is
dominated by the average number of cluster sizes. By doing so, we show that the different
clusters are asymptotically (mean) independent but the units from different clusters are allowed
to be weakly dependent.4

Assumption 1-iii) states that all of our fixed-G asymptotics are understood to be as the
different sizes of clusters Lg to grow to infinity, but at the same rate and relative size, i.e.
Lg/n→ 1/G for g = 1, . . . , G. Equivalently, we can express this approximately equal cluster size
assumption by L̄ = Lg + o(L̄) for each g = 1, ..., G. It is important to point out that we do not
restrict the size of cluster to be exactly same with each other, i.e. L1 = L2 = . . . = LG, but each
cluster has approximately same size relative to the average cluster size.

3See for example, Carter et al. (2017), Djogbenou et al. (2019), and Hansen and Lee (2019).
4BCH (2011) which is closely related to our clustered structure, considers a spatial setting with group structure

and makes an initial contribution toward providing a set of regularity conditions that are suffi cient to obtain the
fixed-G limiting distributions. However, the asymptotic theory developed in BCH (2011) is only applicable to
the exactly linear regression model, and it thus is limited to apply our GMM setting with potentially non-linear
moment conditions. Also, BCH (2011) assumes the exactly equal cluster size, whereas we allow the cluster sizes to
be unbalanced.
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Under Assumption 1, the total (scaled) sum of moment process can be decomposed into
cluster-wise sums as follows

√
ngn(θ0) =

G∑
g=1

√
Lg
n

1√
Lg

Lg∑
i=1

fgi (θ0) =
1√
G

G∑
g=1

1√
Lg

Lg∑
i=1

fgi (θ0)(1 + op(1)),

where the second equation follows by 1-iii).
Let Bm,g be an independent N(0, Im) over g = 1, ..., G. Together with continuous mapping

theorem, the joint CLT condition in Assumption 1-ii) further implies

√
ngn(θ0)

d→ 1√
G

G∑
g=1

ΛgBm,g
d
= N(0,Ω), (3)

where Ω = 1
G

∑G
g=1 Ωg and Λg is the matrix square root of Ωg. Thus, the global covariance matrix

of the whole population Ω can be represented as the simple average of Ωg, g = 1, ..., G, where
Ωg’s are the limiting variances within individual clusters. Motivated by this, we construct the
clustered covariance estimator (CCE) as follows:

Ω̂(θ̂1) =
1

n

n∑
i=1

n∑
j=1

1(i, j ∈ the same group)fi(θ̂1)fj(θ̂1)′

=
1

G

G∑
g=1


 1√

L̄

Lg∑
i=1

fgi (θ̂1)

 1√
L̄

Lg∑
i=1

fgi (θ̂1)

′ .

To ensure that Ω̂(θ̂1) is positive definite, we assume that G ≥ m, and maintain this condition
throughout the rest of the paper.

Suppose we want to test the null hypothesisH0 : Rθ0 = r against the alternativeH1 : Rθ0 6= r,
where R is a p×d matrix. In this paper, we focus on linear restrictions without loss of generality
because the Delta method can be used to convert nonlinear restrictions into linear ones in an
asymptotic sense. The F test version of the Wald test statistic is given by

F (θ̂1) :=
1

p
(Rθ̂1 − r)′

{
Rv̂ar(θ̂1)R′

}−1
(Rθ̂1 − r), (4)

where

v̂ar(θ̂1) =
1

n

[
Γ̂(θ̂1)′W−1

n Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
n Γ̂(θ̂1)

]−1
.

When p = 1 and the alternative is one sided, we can construct the t statistic t(θ̂1) = (Rθ̂1 −
r)/(Rv̂ar(θ̂1)R′)1/2. To formally characterize the asymptotic distributions of F (θ̂1) and t(θ̂1)
under the fixed-G asymptotics, we further maintain the following high level conditions.

Assumption 2 θ̂1
p→ θ0.
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Assumption 3 (i) For each g = 1, ..., G, let Γg(θ) := limLg→∞E
[

1
Lg

∑Lg
i=1

∂fgi (θ)

∂θ′

]
. Then, there

exists ε > 0 such that

sup
θ∈B(θ0,ε)

∥∥∥∥∥∥ 1

Lg

Lg∑
i=1

∂fgi (θ)

∂θ′
− Γg(θ)

∥∥∥∥∥∥ p→ 0 holds,

where B(θ0, ε) is an open ball of θ0 of radius ε, and ‖·‖ is the Euclidean norm. (ii) Γg(θ) is
continuous at θ = θ0, and for Γg = Γg(θ0), Γ = G−1

∑G
g=1 Γg has full rank.

Assumption 4 (Homogeneity of Γg) For all g = 1, ..., G, Γg = Γ.

Assumption 5 (Homogeneity of Ωg) For all g = 1, ..., G, Ωg = Ω.

Assumption 2 is made for convenience, and primitive suffi cient conditions are available from
the standard GMM asymptotic theory. Assumption 3 is a uniform law of large numbers (ULLN),
from which we obtain Γ̂(θ̂1) = G−1

∑G
g=1 Γg + op(1) = Γ + op(1). Supplementary Appendix B.1

presents the formal assumptions that are suffi cient for the spatial ULLN condition in Assumption
3, and proves that each set of assumptions is indeed suffi cient.

The homogeneity conditions in Assumptions 4 and 5 guarantee the asymptotic pivotality
of the cluster-robust GMM statistics we consider, see Remark 4 below. Similar assumptions are
made in BCH (2011) and Sun and Kim (2015), which develop asymptotically valid F tests that are
robust to spatial autocorrelation in the same spirit as our fixed-G asymptotics. The homogeneity
conditions can be restrictive depending on empirical contexts of the clustered data. However,
one of the advantages to impose them in our approach is that one can perform asymptotic t and
F inference in a broad class of GMM test statistics such as Wald/LM/LR-type test statistics.
Also, our approach allows joint testing for parameter vector as well as J-statistics for testing over-
identification. This contrasts with alternative fixed-cluster robust inferences studied in Ibragimov
and Müller (2010, 2016) and Canay et al. (2017) and Canay et al. (2019). They relax the
homogeneity conditions in Assumptions 4 and 5, but their main focus is testing a single hypothesis
in the exactly identified regression problem.

Let

B̄m := G−1
G∑
g=1

Bm,g and S̄ :=
1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
,

where Bm,g as in (B.9). Also, let Wp(K,Π) denote a Wishart distribution with K degrees
of freedom and p × p positive definite scale matrix Π. By construction,

√
GB̄m ∼ N(0, Im),

S̄ ∼ G−1Wp(G− 1, Im), and B̄m ⊥ S̄. To present our asymptotic results, we partition B̄m and S̄
as follows:

B̄m =

 B̄d
d×1

B̄q
q×1

 , B̄d =

 B̄p
p×1

B̄d−p
(d−p)×1

 , S̄ =

 S̄dd
d×d

S̄dq
d×q

S̄qd
q×d

S̄qq
q×q

 ,

and similarly define S̄pp ∈ Rp×p and S̄pq ∈ Rp×q as submatrices of S̄dd and S̄dq, respectively.

Proposition 1 Let Assumptions 1∼5 hold. Then,
(a) F (θ̂1)

d→ F1∞ :=
(
G
p

)
· B̄′pS̄−1

pp B̄p;

(b) t(θ̂1)
d→ T1∞ := N(0,1)√

χ2G−1/G
where N(0, 1) ⊥ χ2

G−1.
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Let Λ the matrix square root of Ω, that is, ΛΛ′ = Ω. The proof of Proposition 1 shows that
Ω̂(θ̂1) converges in distribution to a random matrix Ω1∞ given by

Ω1∞ = ΛD̃Λ′ where D̃ =
1

G

G∑
g=1

D̃gD̃
′
g and

D̃g = Bm,g − ΓΛ(Γ′ΛW
−1
Λ ΓΛ)−1Γ′ΛW

−1
Λ︸ ︷︷ ︸

Quasi-demeaning factor

B̄m (5)

for ΓΛ = Λ−1Γ and WΛ = Λ−1W (Λ′)−1. D̃g is a quasi-demeaned version of Bm,g with quasi-
demeaning attributable to the estimation error in θ̂1. Note that the quasi-demeaning factor in
(5) depends on all of Γ,Ω and W , and cannot be further simplified in general. The estimation
error in θ̂1 affects Ω1∞ in a complicated way. However, for the first-step Wald and t statis-
tics, we do not care about Ω̂(θ̂1) per se. Instead, we care about the scaled covariance matrix
Γ̂(θ̂1)′W−1

n Ω̂(θ̂1)W−1
n Γ̂(θ̂1), which converges in distribution to Γ′W−1Ω1∞W−1Γ. But

Γ′ΛW
−1
Λ D̃g = Γ′ΛW

−1
Λ

(
Bm,g − B̄m

)
,

and thus

Γ′W−1Ω1∞W
−1Γ = Γ′ΛW

−1
Λ D̃W−1

Λ ΓΛ =
1

G

G∑
g=1

Γ′ΛW
−1
Λ D̃g

(
Γ′ΛW

−1
Λ D̃g

)′
d
= Γ′ΛW

−1
Λ

1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′ (
Γ′ΛW

−1
Λ

)′
. (6)

Therefore, to the first order fixed-G asymptotics, the estimation error in θ̂1 affects Γ′W−1Ω1∞W−1Γ
via simple demeaning only. This is a key result that drives the asymptotic pivotality of F (θ̂1)
and t(θ̂1).

As an example of the general GMM setting, consider the linear regression model yi = x′iθ+εi.
Under the assumption that E[xiεi] = 0, the moment function is fi(θ) = xi(yi − x′iθ). With the
moment condition Efi(θ0) = 0, the model is exactly identified. This set up was employed in
Hansen (2007), Stock and Watson (2008), and BCH (2011); indeed, our F and t approximations
in Proposition 1 are identical to what is obtained in these papers.

Remark 2 The suffi cient condition for the within-cluster CLT condition in Assumption 1-ii) is
a weak cross-sectional dependence within and across clusters, but we can allow for some type of
strong dependence induced by a potentially latent common shock C as in Andrews (2005).5 The
modified conditional moment condition is

E [f(Yi, θ0)| C] = 0,

which implies that f(Yi, θ0) is conditionally mean independent of the common shock C. Corre-
spondingly, the CLT condition in Assumption 1-ii) is to be hold conditional on C with a (uncondi-
tional) mixed normal limit, and the probability limits. Also, Γg and Ωg, in Assumptions 3, 4 and
5 are random processes which are conditionally independent across g. Then, it is straightforward

5We thank an anonymous referee for pointing this out.
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to check that the conditional limits F1∞ and T1∞ do not depend on the conditioning common
shock C, and thus the fixed-G asymptotics in Proposition 1 are still asymptotically valid. The
conditioning arguments used here are entirely analogous to that used in Theorem 6 in Andrews
(2005) and shall be maintained in the rest of this paper.

Remark 3 The limiting distribution F1∞ follows Hotelling’s T2distribution. Using the well-

known relationship between the T 2 and standard F distributions, we obtain F1∞
d
= G/(G −

p)Fp,G−p where Fp,G−p is a random variable that follows the F distribution with degree of freedom
(p,G− p). Similarly, T1∞

d
=
√
G/(G− 1)tG−1 where tG−1 is a random variable that follows the

t distribution with degree of freedom G− 1.

Remark 4 When the cluster homogeneity conditions in Assumptions 4 and 5 are relaxed, one
can re-investigate the proof of Proposition 1 and check that

Γ̂(θ̂1)′W−1
n

1√
L̄

Lg∑
i=1

fgi (θ̂1)
d→ Γ′W−1

[
ΛgBm,g − Γg(Γ

′W−1Γ)−1Γ′W−1ΛB̄m
]

= Γ′WΛgBm,g − Γ′W−1Γg(Γ
′W−1Γ)−1Γ′W−1ΛB̄m.

Without imposing Λg = Λ and Γg = Γ, we cannot proceed with the above expressions and fur-
ther show that the CCE has the fixed-G Wishart limiting distributions in (6). In Section 6,
we investigate how violation of these assumptions impacts the finite sample performance of the
cluster-robust tests and compare our results to those of Ibragimov and Müller (2010, 2016) which
do not require the homogeneity conditions. See also Remark 5 below where we justify our tests in
the context of large-G asymptotics which does not require the cluster homogeneity.

Remark 5 Under the large-G asymptotics where G→∞ but Lg is fixed, one can show that the
CCE Ω̂(θ̂1) converges in probability to Ω for

Ω = lim
G→∞

1

G

G∑
g=1

var

 1√
L̄

Lg∑
i=1

fgi (θ0)

 .

The convergence of Ω̂(θ̂1) to Ω does not require the homogeneity of Ωg in Assumption 5 (Hansen,
2007; Carter et al., 2017). Under this type of asymptotics, the test statistics F (θ̂1) and t(θ̂1) are
asymptotically χ2

p/p and N(0, 1). Let F1−α
p,G−p and χ

1−α
p be the 1− α quantiles of the Fp,G−p and

χ2
p distributions, respectively. As G/(G− p) > 1 and F1−α

p,G−p > χ1−α
p /p, it is easy to see that

G

G− pF
1−α
p,G−p > χ1−α

p /p.

However, the difference between the two critical values G(G− p)−1F1−α
p,G−p and χ

1−α
p /p shrinks to

zero as G increases. Therefore, the fixed-G critical value G/(G − p)−1F1−α
p,G−p is asymptotically

valid under the large-G asymptotics. This asymptotic validity holds even if the homogeneity
conditions of Assumptions 4 and 5 are not satisfied. The fixed-G critical value is robust in the
sense that it works whether G is small or large.
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3 Two-step GMM Estimation and Inference

In an overidentified GMM framework, we often employ a two-step procedure to improve the
effi ciency of the initial GMM estimator and the power of the associated tests. It is now well-
known that the optimal weighting matrix is the (inverted) asymptotic variance of the sample
moment conditions, see Hansen (1982). There are at least two different ways to estimate the
asymptotic variance, and these lead to two different estimators Ω̂(θ̂1) and Ω̂c(θ̂1), where

Ω̂(θ̂1) =
1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ̂1)

 1√
L̄

Lg∑
i=1

fgi (θ̂1)

′ , (7)

and

Ω̂c(θ̂1) =
1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

[
fgi (θ̂1)− gn(θ̂1)

]
 1√

L̄

Lg∑
i=1

[
fgi (θ̂1)− gn(θ̂1)

]
′

. (8)

While Ω̂(θ̂1) employs the uncentered moment process ∪Gg=1 ∪
Lg
i=1 {f

g
i (θ̂1)}, Ω̂c(θ̂1) employs the

recentered moment process ∪Gg=1 ∪
Lg
i=1 {f

g
i (θ̂1) − gn(θ̂1)}. For inference based on the first-step

estimator θ̂1, it does not matter which asymptotic variance estimator is used. This is so be-
cause for any asymptotic variance estimator Ω̂(θ̂1), the Wald statistic depends on Ω̂(θ̂1) only via
Γ̂(θ̂1)′W−1

n Ω̂(θ̂1)W−1
n Γ̂(θ̂1). It is easy to show that the following asymptotic equivalence:

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1) = Γ̂(θ̂1)′W−1
n Ω̂c(θ̂1)W−1

n Γ̂(θ̂1) + op (1)

= Γ′W−1
n Ω̂c(θ0)W−1

n Γ + op (1) .

Thus, the limiting distribution of the Wald statistic is the same whether the estimated moment
process is recentered or not. In the next subsections, however, we show that the two asymptotic
variance estimators in (7) and (8) are not asymptotically equivalent by themselves under the
fixed-G asymptotics.

Depending on whether we use Ω̂(θ̂1) or Ω̂c(θ̂1), we have different two-step GMM estimators:

θ̂2 = arg min
θ∈Θ

gn(θ)′
[
Ω̂(θ̂1)

]−1
gn(θ) and θ̂

c

2 = arg min
θ∈Θ

gn(θ)′
[
Ω̂c(θ̂1)

]−1
gn(θ).

Given that Ω̂(θ̂1) and Ω̂c(θ̂1) are not asymptotically equivalent and that they enter the definitions
of θ̂2 and θ̂

c

2 by themselves, the two estimators have different asymptotic behaviors, as proved in
the next two subsections.

3.1 Uncentered Two-step GMM estimator

In this subsection, we consider the two-step GMM estimator θ̂2 based on the uncentered moment
process. We investigate the asymptotic properties of θ̂2 and establish fixed-G limits of the asso-
ciated Wald statistic and J statistic. We show that the J statistic is asymptotically pivotal, even
though the Wald statistic is not.

It follows from standard asymptotic arguments and Assumption 1-iii) that

√
n(θ̂2 − θ0) = −

[
Γ′Ω̂−1(θ̂1)Γ

]−1
Γ′Ω̂−1(θ̂1)

1√
G

G∑
g=1

 1√
Lg

Lg∑
i=1

fgi (θ0)

 (1 + op(1)). (9)
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Using the joint convergence of the followings

Ω̂(θ̂1)
d→ Ω1∞ = ΛD̃Λ′ and

1√
G

G∑
g=1

 1√
Lg

Lg∑
i=1

fgi (θ0)

 d→
√
GΛB̄m, (10)

we obtain √
n(θ̂2 − θ0)

d→ −
[
Γ′ΛD̃−1ΓΛ

]−1
Γ′ΛD̃−1

√
GB̄m,

where D̃ =G−1
∑G

i=1 D̃gD̃
′
g is defined in (5).

Since D̃ is random, the limiting distribution is not normal. Even though both D̃g and B̄m are
normal, there is a nonzero correlation between them. As a result, D̃ and B̄m are correlated, too.
This makes the limiting distribution of

√
n(θ̂2 − θ0) highly nonstandard. Define the F statistic

and variance estimate for the two-step estimator θ̂2 as

FΩ̂(θ̂1)(θ̂2) =
1

p
(Rθ̂2 − r)′

(
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1
(Rθ̂2 − r);

v̂arΩ̂(θ̂1)(θ̂2) =
1

n

(
Γ̂(θ̂2)′Ω̂−1(θ̂1)Γ̂(θ̂2)

)−1
.

On the basis of θ̂2, the J statistic for testing over-identification restrictions is

J(θ̂2) := ngn(θ̂2)′
(

Ω̂(θ̂1)
)−1

gn(θ̂2). (11)

In the above definitions, we use a subscript notation Ω̂(θ̂1) to clarify the choice of CCE in F and
J statistics. Now the question is, is the above F statistic asymptotically pivotal? How about the
J statistics? To answer this, U to be the m ×m matrix of the eigen vectors of Γ′ΛΓΛ = Γ′Ω−1Γ
and UΣV ′ be a singular value decomposition (SVD) of ΓΛ. By construction, U ′U = UU ′ = Im,
V ′V = V ′V = Id, and Σ′ = [ Ad×d Od×q ]. We then define W̃ = U ′WΛU and partition W̃
as before to define βW̃ = W̃dqW̃

−1
qq which is the regression coeffi cient induced by the constant

matrix W̃ . We use the following additional notation:

Ep+q,p+q :=

(
Epp Epq
E′pq Eqq

)
=

(
S̄pp S̄pq
S̄′pq S̄qq

)
+

(
β̃
p

W̃ B̄qB̄
′
q(β̃

p

W̃ )′ β̃
p

W̃ B̄qB̄
′
q

B̄qB̄
′
q(β̃

p

W̃ )′ B̄qB̄
′
q

)
, (12)

where β̃
p

W̃ is the p×q matrix and consists of the first p rows of Ṽ ′βW̃ where Ṽ is the d×d matrix
of the eigen vector of

(
RV A−1

)′
RV A−1. By construction, the matrix β̃

p

W̃ depends on R,Γ,W,
and Ω.

Proposition 6 Let Assumptions 1∼5 hold. Then
(a) FΩ̂(θ̂1)(θ̂2)

d→ G
p ·
[
B̄′p+qE

−1
p+q,p+qB̄p+q − B̄′qS−1

qq B̄q
]

;

(b) J(θ̂2)
d→ G · B̄′qS−1

qq B̄q, where the convergences in (a) and (b) holds jointly.

The proofs of Proposition 6 are available from supplementary Appendix 6. Due to the pres-
ence of the term of Ep+q,p+q, the result of Proposition-(a) indicates that the F statistic is not
asymptotically pivotal, and it depends on several nuisance parameters including Ω. This is be-
cause Ep+q,p+q is a nonconstant function of β̃

p
W , which, in turn, depends on R,Γ,W and Ω.
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While the asymptotic distributions of FΩ̂(θ̂1)(θ̂2) is complicated and nonstandard, it is perhaps
surprising that the limiting distribution of the J-statistic is free of nuisance parameters. Using
the Sherman—Morrison formula6, we check that the weak limit of J(θ̂2) satisfies

G · B̄′qS−1
qq B̄q = G ·

B̄′qS̄−1
qq B̄q

1 + B̄′qS̄
−1
qq B̄q

d
= G · qFq,G−q

(G− q) + qFq,G−q
,

which implies that we have we have

J̃(θ̂2) :=
G− q
q

qJ(θ̂2)

G− qJ(θ̂2)

d→ Fq,G−q.

That is, the transformed J-statistic J̃(θ̂2) is asymptotically F distributed, which is a very ap-
pealing result for empirical applications. It is important to point out that the convenient F limit
of J(θ̂2) holds only if the J-statistic is equal to the GMM criterion function evaluated at the
two-step GMM estimator θ̂2. This effectively imposes a constraint on the weighting matrix. If
we use a weighting matrix that is different from Ω̂(θ̂1), then the resulting J-statistic may not be
asymptotically pivotal any longer.

3.2 Centered Two-step GMM estimator

Given that the estimation error in θ̂1 affects the limiting distribution of Ω̂(θ̂1), the Wald statistic
based on the uncentered two-step GMM estimator θ̂2 is not asymptotically pivotal. In view of
(5), the effect of the estimation error is manifested via a location shift in D̃g; the shifting amount
depends on θ̂1. A key observation is that the location shift is the same for all groups under
the homogeneity Assumptions 4 and 5. Therefore, if we demean the empirical moment process,
we can remove the location shift that is caused by the estimator error in θ̂1. This leads to the
recentered asymptotic variance estimator and a pivotal inference for both the Wald test and J
test.

It is important to note that the recentering is not innocuous for an over-identified GMMmodel
because n−1

∑n
i=1 fi(θ̂1) is not zero in general. In the time series HAR variance estimation, the

recentering is known to have several advantages. For example, as Hall (2000) observes, in the
conventional increasing smoothing asymptotic theory, the recentering can potentially improve the
power of the J test using a HAR variance estimator when the model is misspecified.

In our fixed-G asymptotic framework, the recentering plays an important role in the CCE
estimation. It ensures that the limiting distribution of Ω̂c(θ̂1) is invariant to the initial estimator
θ̂1. The following lemma proves a more general result and characterizes the fixed-G limiting
distribution of the centered CCE matrix for any

√
n-consistent estimator θ̃.

Lemma 7 Let Assumptions 1∼5 hold. Let θ̃ be any
√
n-consistent estimator of θ0. Then

(a) Ω̂c(θ̃) = Ω̂c(θ0) + op(1);

(b) Ω̂c(θ0)
d→ Ωc

∞ where Ωc
∞ = ΛS̄Λ′.

Lemma 7 indicates that the centered CCE Ωc(θ̂1) converges in distribution to the random
matrix limit Ωc

∞ = ΛS̄Λ′, which follows a (scaled) Wishart distribution G−1Wm(G− 1,Ω). Using

6 (C + ab′)−1 = C−1 − C−1ab′C−1

1+b′C−1a for any invertable square matrix C and conforming column vectors such that

1 + b′C−1a 6= 0.
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Lemma 7, it is possible to show

√
n(θ̂

c

2 − θ0) = −
(

Γ′
[
Ω̂c(θ̂1)

]−1
Γ

)−1

Γ′
[
Ω̂c(θ̂1)

]−1√
ngn(θ0) + op(1) (13)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m. (14)

Since (Ωc
∞)−1 is independent with

√
GΛB̄m ∼ N(0,Ω), the limiting distribution of θ̂

c

2 is mixed
normal.

On the basis of θ̂
c

2, we can construct the following normalized Wald statistic

FΩ̂c(θ̂1)(θ̂
c

2) :=
1

p
(Rθ̂

c

2 − r)′{Rv̂arΩ̂c(θ̂
c
2)

(θ̂
c

2)R′}−1(Rθ̂
c

2 − r), where (15)

v̂arΩ̂c(θ̂1)(θ̂
c

2) =
1

n

(
Γ̂(θ̂

c

2)′
(

Ω̂c(θ̂1)
)−1

Γ̂(θ̂
c

2)

)−1

.

When p = 1, corresponding t statistic tΩ̂c(θ̂1)(θ̂
c

2) can be constructed similarly. We also construct

the standard J statistic based on θ̂
c

2

J(θ̂
c

2) := ngn(θ̂
c

2)′
(

Ω̂c(θ̂1)
)−1

gn(θ̂
c

2),

where Ω̂c(θ̂1) can be replaced by Ω̂c(θ̂
c

2) without affecting the limiting distribution of the J
statistic.

Using (13) and Lemma 7, we have FΩ̂c(θ̂1)(θ̂
c

2)
d→ F2∞ where

F2∞ =
G

p
·
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]′ [
R
(
Γ′ΛS̄−1ΓΛ

)−1
R′
]−1

(16)

×
[
R
(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

]
.

Also, it follows in a similar way that

J(θ̂
c

2)
d→ J∞ := G ·

{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}′
S̄−1 (17)

×
{
B̄m − ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}
.

The remaining question is whether the above representations for F2∞ and J∞ are free of
nuisance parameters. The following proposition provides a positive answer. The proofs of Propo-
sition 8 are available from supplementary Appendix 8.

Proposition 8 Let Assumptions 1∼5 hold and define S̄pp·q = S̄pp − S̄pqS̄−1
qq S̄qp. Then,

(a) FΩ̂c(θ̂1)(θ̂
c

2)
d→ G

p ·
(
B̄p − S̄pqS̄−1

qq B̄q
)′ S̄−1

pp·q
(
B̄p − S̄pqS̄−1

qq B̄q
)′ d

= F2∞;

(b) tΩ̂c(θ̂1)(θ̂
c

2)
d→
√
G
(
B̄p − S̄pqS̄−1

qq B̄q
)
/
√
S̄pp·q

d
= T2∞ for p = 1;

(c) J(θ̂
c

2)
d→ G · B̄′qS̄−1

qq B̄q
d
= J∞, where the convergences hold jointly.
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To simplify the representations of F2∞ and T2∞ in the above proposition, we note that

G

[
S̄pp S̄pq
S̄qp S̄qq

]
d
=

G∑
g=1

(
Bp+q,g − B̄p+q

) (
Bp+q,g − B̄p+q

)′
,

where Bp+q,g := (B′p,g, B
′
p,g)
′. The above random matrix has a standard Wishart distribution

Wp+q(G−1, Ip+q). It follows from the well-known properties of a Wishart distribution that S̄pp·q ∼
Wp(G − 1 − q, Ip)/G and S̄pp·q is independent of S̄pq and S̄qq.See Bilodeau and Brenner (2008,
Proposition 7.9). Therefore, if we condition on ∆ := S̄pqS̄−1

qq

√
GB̄q, the limiting distribution F2∞

satisfies

G− p− q
G

F2∞
d
=
G− p− q

G

(
√
GB̄p + ∆)′S̄−1

pp·q(
√
GB̄p + ∆)

p

d
= Fp,G−p−q

(
‖∆‖2

)
,

where Fp,G−p−q(‖∆‖2) is a noncentral F distribution with random noncentrality parameter ‖∆‖2 .
Similarly, the limiting distribution of (scaled) T2∞ can be represented as tG−1−q(∆) which is a
noncentral t distribution with a noncentrality parameter tp,G−1−q(∆) which is a noncentral
t distribution with a noncentrality parameter ∆. These nonstandard limiting distributions are
similar to those in Sun (2014) which provides the fixed-smoothing asymptotic result in the case of
the series LRV estimation. However, in our setting of clustered dependence, the scale adjustment
and degrees of freedom parameter in Fp,G−p−q(‖∆‖2) and tp,G−1−q(∆) are different from those
in Sun (2014). The critical values from the nonstandard limiting distribution T2∞ and F2∞ can
be obtained through simulation.

For the J statistic J(θ̂
c

2), it follows from Proposition 8-(c) that(
G− q
Gq

)
· J(θ̂

c

2)
d→
(
G− q
Gq

)
· B̄′qS̄−1

qq B̄q
d
= Fq,G−q.

This is consistent with Sun and Kim’s (2012) results except that our adjustment and degrees of
freedom parameter are different.

Remark 9 In supplemental Appendix B.4, we extend the formulation of Wald tests to the QLR
and LM types of GMM statistics and show that they are asymptotically equivalent to FΩ̂c(θ̂1)(θ̂

c

2).
This implies that all three types of test statistics share the same fixed-G limit as given in Propo-
sition 8. Similar results are obtained by Hwang and Sun (2017a), which focus on the two-step
GMM estimation and HAR inference in a time series setting.

4 Asymptotic F and t Tests for Centered Two-step GMM Pro-
cedures

The limiting distributions of the centered two-step GMM test statistics in Section 3 are non-
standard under the fixed-G asymptotics, and hence the corresponding critical values have to
be simulated in practice. This contrasts with the conventional large-G asymptotics, where the
limiting distributions are the standard chi-squared and normal distributions. In this section, we
show that a simple modification of the two-step Wald and t statistics enables us to develop the
standard F and t asymptotic theory under the fixed-G asymptotics. The asymptotic F and t
tests are more appealing in empirical applications because the standard F and t distributions are
more accessible than the nonstandard F2∞ and T2∞ distributions.
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The modified two-step Wald and t statistic are

F̃Ω̂c(θ̂1)(θ̂
c

2) : =
G− p− q

G
·
FΩ̂c(θ̂1)(θ̂

c

2)

1 + 1
GJ(θ̂

c

2)
; (18)

t̃Ω̂c(θ̂1)(θ̂
c

2) : =

√
G− 1− q

G
·

tΩ̂c(θ̂1)(θ̂
c

2)√
1 + 1

GJ(θ̂
c

2)
.

The modified test statistics involve a scale multiplication factor that uses the usual J statistic
and a constant factor that adjusts the degrees of freedom.

It follows from Proposition 8 that(
F

Ω̂c(θ̂
c
2)

(θ̂
c

2), J(θ̂
c

2)
)

d→ (F2∞, J∞) (19)

d
=

(
G

p

(
B̄p − S̄pqS̄−1

qq B̄q
)′ S̄−1

pp·q
(
B̄p − S̄pqS̄−1

qq B̄q
)′
, G · B̄′qS̄−1

qq B̄q

)
(20)

Thus,

F̃
Ω̂c(θ̂

c
2)

(θ̂
c

2)
d→ G− p− q

G

F2∞
1 + 1

GJ∞
d
=
G− p− q

pG
ξ′pS̄−1

pp·qξp,

where

ξp :=

√
G(B̄p − S̄pqS̄−1

qq B̄q)√
1 + B̄′qS̄

−1
qq B̄q

.

Similarly,

t̃
Ω̂c(θ̂

c
2)

(θ̂
c

2)
d→
√
G− 1− q

G
· T2∞√

1 + 1
GJ∞

d
=

ξp√
S̃pp·q

.

In the proof of Theorem 10 we show that ξp follows a standard normal distribution N(0, Ip),

and ξp is independent of S̄−1
pp·q. Thus, the limiting distribution of F̃Ω̂c(θ̂

c
2)

(θ̂
c

2) is proportional to a
quadratic form in the standard normal vector ξp with an independent inverse-Wishart distrib-
uted weighting matrix S̄−1

pp·q. It follows from a theory of multivariate statistics that the limiting

distribution of F̃
Ωc(θ̂

c
2)

(θ̂
c

2) is Fp,G−p−q. Similarly, the limiting distribution of t̃Ω̂c(θ̂c2)
(θ̂
c

2) is tG−1−q.

This is formalized in the following theorem.

Theorem 10 Let Assumptions 1∼5 hold. Then the modified Wald statistics converges in distri-
bution to Fp,G−p−q. Also, the modified t statistics has limiting distribution tG−1−q.

The limiting t and F results in Theorem are consistent with the recent paper by Hwang and
Sun (2017a) which establishes a similar F and t limit theory of two-step GMM in a time series
setting. But our cluster-robust limiting distributions in Theorem 10 are different from Hwang
and Sun (2017a) in terms of the multiplicative adjustment and the degrees of freedom correction.

It follows from the proofs of Theorem 10 and Proposition 8 that

√
n(θ̂

c

2 − θ0)
d→MN

(
0,
(
Γ′Ω−1Γ

)−1 · (1 + B̄′qS̄−1
qq B̄q)

)
and (21)

J(θ̂
c

2)
d→ G · B̄′qS̄−1

qq B̄q
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hold jointly under fixed-G asymptotics. Here, MN(0,V) denotes a random variable that follows
a mixed normal distribution with conditional variance V. The random multiplication term (1 +
B̄′qS̃

−1
qq B̄q) in (21) reflects the estimation uncertainty of CCE weighting matrix on the limiting

distribution of
√
n(θ̂

c

2− θ0). The fixed-G limiting distribution in (21) is in sharp contrast to that
of under the conventional large-G asymptotics as the latter completely ignores the variability in
the cluster-robust GMM weighting matrix. By continuous mapping theorem,

√
n(θ̂

c

2 − θ0)√
1 + 1

GJ(θ̂
c

2)

d→ N
(

0,
(
Γ′Ω−1Γ

)−1
)
. (22)

and this shows that the J statistic modification factor in the denominator effectively cancels out
the uncertainty of CCE to recover the limiting distribution of

√
n(θ̂

c

2−θ0) under the conventional
large-G asymptotics. In view of (22), the finite sample distribution of

√
n(θ̂

c

2 − θ0) conditional
on the J statistic J(θ̂

c

2), can be well-approximated by N(0, ṽarΩ̂c(θ̂1)(θ̂
c

2)) where

ṽarΩ̂c(θ̂1)(θ̂
c

2) := v̂arΩ̂c(θ̂1)(θ̂
c

2) ·
(

1 +
1

G
J(θ̂

c

2)

)
. (23)

The modification term (1 + (1/G)J(θ̂
c

2))−1 degenerates to one as G increases so that the two
variance estimates in (23) become close to each other. Thus, the multiplicative term (1 +
(1/G)J(θ̂

c

2))−1 in (18) can be regarded as a finite sample modification to the standard vari-
ance estimate v̂arΩ̂c(θ̂1)(θ̂

c

2) under the large-G asymptotics. For more discussions about the role
of J statistic modification, see Hwang and Sun (2017b) which casts the two-step GMM problems
into OLS estimation and inference in classical normal linear regression.

Remark 11 When the cluster sizes are asymptotically unbalanced, i.e. Lg/n → λg > 0 and λg
does not have to equal to 1/G, Supplemental Appendix B.5 shows that the centered CCE weakly
converges to a random matrix ΛM̄Λ′, where

M̄ := M̄(λ) =
G∑
g=1

(√
λgBm,g − λg

G∑
h=1

√
λhBm,h

)(√
λgBm,g − λg

G∑
h=1

√
λhBm,h

)′
.

Clearly, the submatrices M̄pp and M̄qq do not follow (scaled) Wishart distributions unless for
λ1 = . . . = λG = 1/G. As a result, M̄pp·q = M̄pp−M̄pqM̄−1

qq M̄qp does not follow a (scaled) Wishart
distribution and is not independent of M̄pq and M̄qq. In addition, ξp is not distributed as N(0, Ip)
which are the key conditions that drive the F and t limit theory. Thus, in the absence of the
approximately equal cluster size in Assumption 1-iii), an exact asymptotic F theory or t theory
can not be developed.

Remark 12 Another class of popular GMM estimators is the continuous updating (CU) esti-
mators, which are designed to improve the poor finite sample performance of two-step GMM
estimators, e.g. Hansen, Heaton, and Yaron (1996) and Newey and Smith (2004). Supplemental
Appendix B.6 presents two types of CU schemes, CU-GMM and CU-GEE, and shows that the
uncentered CU estimators and the centered two-step GMM estimator are asymptotically equiva-
lent under the fixed-G asymptotics. Thus, the CU estimators can be regarded as having a built-in
recentering mechanism similar to the centered two-step GMM estimator.
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5 Finite Sample Variance Correction

Although the recentering scheme we investigate in the previous sections enables us to remove
the first order effect of the first-step estimation error, the centered two-step GMM estimator
still faces some extra estimation uncertainty when the unobserved moment process in the GMM
weight matrix is estimated using the first-step estimator. To solve this problem, Windmeijer
(2005) proposes a finite sample corrected variance formula which is derived by a second order
stochastic approximation of linear GMM model. Windmeijer (2005)’s corrected variance formula
has been widely implemented in applied work with high impact for linear GMM models such as
instrumental regression models and dynamic panel data models.7 See, for example, Roodman
(2009), Brown et al. (2009), Oberholzer-Gee and Strumpf (2007), and many others. However,
the original corrected variance formula in Windmeijer (2005) is not applicable in our clustered
dependence setting because its key assumption is that the true moment process is i.i.d.

In this section, we overcome the limited applicability of Windmeijer (2005)’s one in the
presence of clustered dependence and develop a finite-sample corrected variance formula for the
feasible two-step GMM estimator. The new variance formula can be thought of as refining the
first-order fixed-G asymptotics. We first derive a second order stochastic expansion of linear
GMM two-step estimator which uses the CCE weight matrix. To be more specific, define the
infeasible two-step GMM estimator with the centered CCE weighting matrix Ω̂c(θ0) as

θ̃
c
2 = arg min

θ∈Θ
gn(θ)′

(
Ω̂c(θ0)

)−1
gn(θ).

When the moment condition is linear in parameter vector, we obtain

√
n(θ̃

c
2 − θ0) = −

[
Γ̂′
(

Ω̂c(θ0)
)−1

Γ̂

]−1

Γ̂′
(

Ω̂c(θ0)
)−1√

ngn(θ0),

and
√
n(θ̂

c

2 − θ0) = −
[
Γ̂′
(

Ω̂c(θ̂1)
)−1

Γ̂

]−1

Γ̂′
(

Ω̂c(θ̂1)
)−1√

ngn(θ0). (24)

Together with the result in Lemma 7, Ω̂c(θ̂1) = Ω̂c(θ0) + op(1), this implies that

√
n(θ̂

c

2 − θ0) =
√
n(θ̃

c
2 − θ0) + op(1), (25)

as n→∞ holding G is fixed. That is, the estimation error in θ̂1 has no effect on the asymptotic
distribution of

√
n(θ̂

c

2 − θ0) in the first-order asymptotic analysis. However, in finite samples, θ̂
c

2

does have higher variation than θ̃
c
2, and this can be attributed to the high variation in Ω̂c(θ̂1)

than Ω̂c(θ0). However, we can be more explicit in the extra variation of
√
n(θ̂

c

2 − θ0) by keeping
the leading order term of op(1) in (25) as

√
n(θ̂

c

2 − θ0) = −
[
Γ̂′
(

Ω̂c(θ̂1)
)−1

Γ̂

]−1

Γ̂′
(

Ω̂c(θ̂1)
)−1√

ngn(θ0)

+(E1n + E1n)
√
n(θ̂1 − θ0) + op

(
1√
n

)
, (26)

7More than 5,000 citations according to Google Scholar in March, 2020.
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where E1n and E2n are d× d matrices with

E1n = −
∂

{
Γ̂′
[
Ω̂c(θ)

]−1
Γ̂

}−1

∂θ′

∣∣∣∣∣∣∣∣∣
θ=θ0

Γ̂′
[
Ω̂c(θ0)

]−1
gn(θ0);

E2n = −
{

Γ̂′
[
Ω̂c(θ)

]−1
Γ̂

}−1 ∂Γ̂′
[
Ω̂c(θ)

]−1
g(θ0)

∂θ′

∣∣∣∣∣∣∣
θ=θ0

,

respectively. It is easy to check both E1n and E2n are Op(n−1/2), so that the term (E1n +

E1n)
√
n(θ̂1 − θ0) in (26) exactly captures the leading order of errors in (25).

Considering the leading higher order term in (26), our goal is to come up with a finite
sample corrected variance formula. To do so, we seek for a refined distributional approximation
of
√
n(θ̂

c

2 − θ0) based on (26). Note that, from the FOC of θ̂
c

2 if we try to estimate the term
Γ̂′[Ω̂c(θ0)]−1gn(θ0) in E1n by Γ̂[Ω̂c(θ̂1)]−1gn(θ̂

c

2), the estimate will be identically zero almost surely.
For this reason, we can drop E1n and consider only E2n, and consider the following distributional
approximation

√
n(θ̂

c

2 − θ0)
a∼ −

( [
Γ′ (Ωc

∞)−1 Γ
]−1

Ẽ2n(Γ′W−1Γ)−1
)(

Γ′ (Ωc
∞)−1 ΛZ

Γ′WΛZ

)
, (27)

where Z ∼ N(0, Id), Z is independent of Ωc
∞, and Ẽ2n has the same marginal distribution as E2n

and is independent of Z and Ωc
∞. Here, the notation

a∼ in (27) denotes that the stochastically
bounded sequences of random vectors ξn and ηn converge in distribution to the same limit.

Since the Ẽ2n (E2n) converges to zero in probability, the multiplicative term Ẽ2n(Γ′W−1Γ)−1

on the right-hand side in (27) has no first order effect to characterize the first-order asymptotic
distribution of

√
n(θ̂

c

2 − θ0). However, the smaller order term at the approximating distribution
in (27) motivates us to develop a finite sample correction to the asymptotic variance estimator.
From (27), it follows that

√
n(θ̂

c

2 − θ0) is asymptotically equivalent in distribution to the mixed
normal distribution whose conditional variance is given by

Ξn =

( [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1Ẽ ′2n

)′(
Γ′ (Ωc

∞)−1 Ω (Ωc
∞)−1 Γ Γ′ (Ωc

∞)−1 ΩW−1Γ

Γ′W−1Ω′ (Ωc
∞)−1 Γ Γ′W−1ΩW−1Γ

)( [
Γ′ (Ωc

∞)−1 Γ
]−1

(Γ′W−1Γ)−1Ẽ ′2n

)
.

From this, we propose to use the following corrected variance estimator:

v̂arw
Ω̂c(θ̂1)

(θ̂
c

2) =
1

n
Ξ̂n

=
1

n

( [
Γ̂′
[
Ω̂c(θ̂1)

]−1
Γ̂

]−1

Ên(Γ̂′W−1
n Γ̂)−1

)
×
(

Γ̂′
[
Ω̂c(θ̂1)

]−1
Γ̂ Γ̂′W−1

n Γ̂

Γ̂′W−1
n Γ̂ Γ̂′W−1

n Ω̂c(θ̂1)W−1
n Γ̂

)

×

 [
Γ̂′
[
Ω̂c(θ̂1)

]−1
Γ̂′
]−1

(Γ̂′W−1
n Γ̂)−1Ê ′n


= v̂arΩ̂c(θ̂1)(θ̂

c

2) + Ênv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)Ê ′n + Ênv̂ar(θ̂1)Ê ′n, (28)
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where the j-th column of Ên is

Ên[., j] =

{
Γ̂′
[
Ω̂c(θ̂1)

]−1
Γ̂′
}−1

Γ̂′

{[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
}
gn(θ̂

c

2),

and

Υj(θ0) =
1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

(
fgi (θ0)− 1

n

n∑
i=1

fi(θ0)

)
1√
L̄

Lg∑
i=1

(
∂fgi (θ0)

∂θj
− 1

n

n∑
i=1

∂fi(θ0)

∂θj

)′ .
The last three terms in (28), which are of smaller order, serve as a finite sample correction to the
original variance estimator.

Besides our asymptotic variance formula in (28) extends Windmeijer (2005)’s one which con-
siders only an i.i.d. setting, there are two principal differences between Windmeijer’s approach
and ours. First, our asymptotic variance estimator in (28) involves a centered CCE; in contrast,
Windmeijer’s formula involves only a plain variance estimator. Second, we consider the fixed-G
asymptotics; Windmeijer (2005) considers the traditional asymptotics n → ∞ in an i.i.d set-
ting. To our knowledge, this paper is the first to rigorously prove the asymptotic validity of the
Windmeijer type finite sample corrected variance under the fixed-G asymptotic point of view.

With the finite sample corrected variance estimator, we can construct the variance-corrected
Wald and t statistics:

Fw
Ω̂c(θ̂1)

(θ̂
c

2) =
1

p
(Rθ̂

c

2 − r)′
[
Rv̂arw

Ω̂c(θ̂1)
(θ̂
c

2)R′
]−1

(Rθ̂
c

2 − r);

tw
Ω̂c(θ̂1)

(θ̂
c

2) =
Rθ̂

c

2 − r√
Rv̂arw

Ω̂c(θ̂1)
(θ̂
c

2))R′
.

Given that the variance correction terms are of smaller order, the variance-corrected statistic will
have the same limiting distribution as the original statistic.

Assumption 6 For each g = 1, ..., G and j = 1, ..., d, define Qgj (θ) as

Qgj (θ) = lim
Lg→∞

E

 1

Lg

Lg∑
i=1

∂

∂θ′

(
∂fgi (θ)

∂θj

) .
Then,

sup
θ∈N (θ0)

∥∥∥∥∥∥ 1

Lg

Lg∑
i=1

∂

∂θ′

(
∂fgi (θ)

∂θj

)
−Qgj (θ)

∥∥∥∥∥∥ p→ 0

holds for each g = 1, ..., G and j = 1, ..., d, where N (θ0) is an open neighborhood of θ0, and ‖·‖
is the Euclidean norm. Also, Qgj (θ0) = Qj(θ0) for g = 1, ...G.

This assumption trivially holds if the moment conditions are linear in parameters.

Theorem 13 Let Assumptions 1∼6 hold. Then

Fw
Ω̂c(θ̂1)

(θ̂
c

2) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1) ;

tw
Ω̂c(θ̂1)

(θ̂
c

2) = tΩ̂c(θ̂1)(θ̂
c

2) + op(1).
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In the proof of Theorem 13, we show that Ên = (1 + op(1))E2n. That is, the high order
correction term has been consistently estimated in a relative sense. This guarantees that Ên is a
reasonable estimator for E2n, which is of order Op(n−1/2).

It is important to point out that our proposed formula captures the higher-order term for
linear models. For non-linear models, the order of the remainder term is the same as the correction
terms, so the corrections may not necessarily provide finite-sample improvements. This is because
the non-linear GMM estimator for the Jacobian matrix Γ̂(θ̂1) also depends on the plugged-in
parameter, and corresponding stochastic expansion is not counted on our formula. However, the
proof Theorem 13 does not rely on the linearity in moment condition and shows that our proposed
finite-sample corrected variance estimator is still consistent. Thus, the robustness property in
Theorem 13 holds for both linear and nonlinear models.

As a direct implication of Theorem 13 together with Theorem 10, the Wald and t statistics
coupled with the J statistic modification and the finite sample variance correction have the
standard F and t limiting distributions found in Theorem 10. That is,

F̃w
Ω̂c(θ̂1)

(θ̂
c

2) :=
G− p− q

G
·
Fw

Ω̂c(θ̂1)
(θ̂
c

2)

1 + 1
GJ(θ̂

c

2)

d→ Fp,G−p−q (29)

and

t̃w
Ω̂c(θ̂1)

(θ̂
c

2) :=

√
G− 1− q

G

tw
Ω̂c(θ̂1)

(θ̂
c

2)√
1 + 1

GJ(θ̂
c

2)

d→ tG−1−q. (30)

The multiplicative modification provided in Section 4 can turn the nonstandard distributions
into the standard F and t distributions in (29) and (30), respectively. Compared to other types
of GMM tests, our simulation evidence demonstrates the size accuracy of the above Wald and
t statistics. Also, the tests are very appealing to practitioners because they can implement
the standard t and F critical values to the finite-sample corrected test statistics. No further
simulations or re-sampling methods are needed. Thus, we recommend practitioners to use these
statistics.

Remark 14 More broadly, we may use the higher-order terms in (26) to develop an Edgeworth
expansion. The Edgeworth expansion targets a higher-order expansion of the finite-sample dis-
tribution of the cluster robust t and F statistics. However, the Edgeworth expansion usually
requires a strong set of assumptions for the true moment process. For example, to derive the
Edgeworth expansion for the cluster robust test statistics, Djogbenou et al. (2019) requires to
assume a single number of hypothesis test (p = 1), an exactly identified linear regression model,
a strict independence across clusters, increasing number of clusters G as n → ∞ with bounded
cluster sizes Lg, and a non-degenerate absolutely continuous component of probability distribution
(Cramér’s condition). The present paper, however, does not require any of these assumptions.

Remark 15 In addition to the technical reasons, another reason for avoiding the Edgeworth
expansion is that we have already achieved more accurate fixed-G asymptotic approximations of
t and F statistics. After capturing the variation of the CCE matrix via the fixed-G asymptotics,
we correct a higher-order bias of the asymptotic variance matrix using a stochastic expansion of
the feasible two-step GMM estimator in (26).
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Remark 16 Following Newey and Smith (2004), one can derive a more formal stochastic ex-
pansion than (26) and capture additional smaller order errors arising from Wn and Γ̂ as well
as Ω̂c(θ̂1). A recent paper by Hwang et al. (2019) shows that the additional correction for these
terms in i.i.d GMM provides robustness to misspecification in the over-identified moment con-
dition. Technically, it is not diffi cult to extend our clustered asymptotic variance formula by
considering the extra corrections provided in Hwang et al. (2019). However, simulation results
in Hwang et al. (2019) show that, under correctly specified moment condition which is the main
focus of this paper, there is not much difference between the two formulas. It will be interesting
to develop misspecification robust GMM inferences using our fixed-G asymptotics, and we leave
it as future research.

6 Simulation Evidence

6.1 Design

In the presence of both time series and cross-sectional dependence, we compare the finite sample
performance of our new tests by focusing on the following linear dynamic panel data model:

yit = γyit−1 + x1,itβ1 + ...+ xd−1,itβ3 + ηi + uit.

The unknown parameter vector is θ = (γ, β1, ..., βd−1)′ ∈ Rd, and the corresponding covariates
are wit = (yit−1, xit)

′ ∈ Rd with xit = (x1,it, ..., xd−1,it)
′ ∈ Rd−1. We set the number of parameters

d as 4 and the true value of θ as θ0 = (0.5, 1, 1, 1)′. The k-th predetermined regressor xk,it are
generated according to the following process:

xk,it = ρxk,it−1 + ηi + ρuit−1 + ek,it,

for k = 1, 2, d − 1, i = 1, ..., n, and t = 1, ..., T. Let η = (η1, . . . , ηn)′, ut = (u1t, . . . , unt), and
ek,t = (ek,1t, . . . , ek,nt)

′. Setting the number of time periods to be T = 4, we characterize the cross-
sectional dependence in η, et, and ut by spatial locations that are indexed by a one-dimensional
lattice. Define Ση and Σu to be n × n matrices whose (i, j)-th elements are σηij = λ|i−j| and

σuij = λ|i−j|, respectively. Similarly, the (i, j)-th element of Σk,e is σek,ij = λ|i−j| for k = 1, ..., d−1.
The parameter λ governs the degree of spatial dependence. When λ = 0 with λ0 = 1, there is
no spatial dependence and our model reduces to that of Windmeijer (2005) which considers a
dynamic panel data model with only one regressor. We divide the sample of size n into G equal-
sized groups of consecutive observations so that the individuals are correlated across different
clusters but asymptotically (mean) independent. The smaller the size of clusters L = n/G, the
less asymptotic independence presents across different groups. The individual fixed effects and
shocks are generated by

η ∼ N(0,Ση), ek,t
i.i.d.∼ N(0,Σk,e) for k = 1, . . . d− 1, (31)

ut := τ tΣ
1/2
u (δ1ω1t, , .., δnωnt)

′,

δi
i.i.d.∼ U [0.5, 1.5], and ωit

i.i.d.∼ χ2
1 − 1,

over i = 1, ..., n, and t = 1, ..., T, where τ t = 0.5+0.1(t−1). The DGP of individual component ui,t
in ut features a non-Gaussian process which is heteroskedastic over both time t and individual
i. Before we draw an estimation sample for t = 1, ..., T , 50 initial values are generated with
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τ t = 0.5 for t = −49, ..., 0, xk,−49 ∼ N(ηi/(1− ρ), (1− ρ)−1Σk,e) for k = 1, ..., d− 1, and yi,−49 =
(
∑3

d=1 xd,i,−49βd+ηi+ui,−49)/(1−γ). We fix the values of λ and ρ at 0.60; thus each observation
is reasonably persistent with respect to both time and spatial dimensions.8 The parameters
are estimated by the first differenced GMM (Arellano and Bond estimator). In supplemental
Appendix B.7, we describe in details how to implement the GMM inference procedures considered
in this section. With all possible lagged instruments zit = (yi0, ..., yit−2, x

′
i1, ..., x

′
it−1)′, 2 ≤ t ≤ T ,

the number of moment conditions for the Arellano and Bond estimator is m = dT (T − 1)/2.
It could be better to use only a subset of full moment conditions because using this full set of
instruments may lead to poor finite sample properties, especially when the number of clusters
G is small. Thus, we also employ a reduced set of instruments; that is, we use the most recent
lag zit = (yit−2, x

′
it−1)′, leading to d(T − 1) moment conditions. The initial first-step estimator is

chosen by 2SLS with Wn = n−1
∑n

i=1 Z
′
iZi, where Zi = diag(z′i2, ..., z

′
iT ) is a (T − 1)×m matrix.

6.2 Choice of tests

We examine the empirical size of a variety of testing procedures, all of which are based on the
first-step or two-step GMM estimators. For the first-step procedures, we consider the unmodified
F statistic F1 := F1(θ̂1) and the degrees-of-freedom modified F statistic [(G− p) /G]F1, where
the associated critical values χ1−α

p /p justified under the large-G asymptotics, and F1−α
p,G−p under

the fixed-G asymptotics, respectively. Note that these two tests have the same size-adjusted
power, because the modification only involves a constant multiplier factor.

For the two-step GMM estimation and related tests, we examine the four different procedures
that are based on the centered CCE. The first test uses the “plain”F statistic F2 := FΩ̂c(θ̂1)(θ̂

c

2)

in (15), where its critical value χ1−α
p /p is justified by the large-G asymptotics. The second test

uses the modified F̃2 := FΩ̂c(θ̂1)(θ̂
c

2) in (18). Compared to the plain two-step GMM F statistic,

F̃2 has the additional J statistic correction factor (1+(q/G)J(θ̂
c

2))−1. The third test, F̃w
Ω̂c(θ̂1)

(θ̂
c

2),

uses the most refined version of the F statistic coupled with the J statistic modification, degrees-
of-freedom, and finite sample corrected variance estimator which is defined in (29). The second
and third tests employ the new F critical value F1−α

p,G−p−q which is justified under the fixed-G
asymptotics. Lastly, we consider a bootstrap procedure of the centered two-step GMM test
originally proposed by Hall and Horowitz (1996).9 Note that the consistency and the higher-
order refinement of Hall-Horowitz bootstrap procedure require the number of cluster G tends to
infinity. This is contrast to the previous two tests that are valid under the fixed-G asymptotics.

8When the panel data are persistent with ρ being close to one, the lagged instruments are only weakly correlated
with the endogenous changes in the first differenced data, and the GMM inferences considered in our paper can
suffer a weak identification problem (e.g., Blundell and Bond, 1998; Stock and Wright, 2000; Bun and Windmeijer,
2010). It will be interesting to extend our approach to develop weak identification robust GMM inferences under
clustered dependence, and we leave this as a future research.

9See supplementary Appendix B.8 for the details about how to implement the bootstrap procedure of Hall and
Horowitz (1996) in the presence of clustered dependence.
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6.3 Results with balanced and homogeneous cluster size

6.3.1 Size experiment

We first consider the case when we take different values of G ∈ {35, 50, 70, 100}, and the equal
number of cluster size L = L1 = . . . = Lg ∈ {50, 100}. The null hypotheses of interests are

H01 : β10 = 1, H02 : β10 = β20 = 1, H03 : β10 = β20 = β30 = 1,

with the corresponding number of joint hypotheses p = 1, 2 and 3, respectively, and the signif-
icance level is 5%. All of our of simulation results are based on 5, 000 times of Monte Carlo
repetition, and the number of bootstrap replication is 1, 000.

Tables 1 reports the empirical size of the first-step and two-step tests for different values of
G′s we consider and L = 50. We only report the results when L = 50 with G = 50, 100, as
the qualitative observations for other cases remain quite similar. The results first indicate that
both the first-step and two-step tests based on unmodified statistics F1 and F2 suffer from severe
size distortions, when the conventional chi-squared critical values are used. For example, with
G = 50 and p = 3, the empirical size of the first-step chi-squared test (using the full set of IVs, and
m = 24) is 24.2%. The empirical sizes of the first-step F test reduce to 19.1% when the F critical
values are employed. This finding is consistent with the findings in BCH (2011) and Hansen
(2007), which highlight the improved finite sample performance of the fixed-G approximation in
the exactly identified models. Tables 1 also indicates that the finite sample size distortion of all
tests become less severe as the number of moment conditions decreases or the number of cluster
size G increases.

For the two-step tests that employ the plain two-step statistic F2 with the chi-squared critical
values, the empirical sizes are between 23.7%—53.5% for m = 24, and p = 3 . In view of the large
size distortion, we can conclude that the two-step chi-squared test suffers more size distortion
than the first-step chi-squared test. This relatively large size distortion reflects the additional
cost in estimating the weighting matrix, which is not captured by the chi-square approximation.
This motivates us to implement additional corrections via degrees of freedom and the J statistic
multiplier coupled with the new critical value F1−α

p,G−p−q. Tables 1 shows that the additional
modifications with the standard F critical value significantly alleviate the distortion. The size
distortions in the previous example are reported to be between 6.1% and 6.9% which are much
closer to the targeted level 5%. Lastly, we find evidence that the most refined statistic F̃w2 ,
equipped with the finite sample variance correction, results in the empirical sizes between 5.3%—
5.9%. This indicates the most refined two-step Wald test successfully captures the higher order
estimation uncertainty and yields more accurate finite sample size. We find similar conclusions
for other values of L, m, and p.

Tables 1 also shows the empirical rejection probabilities of the two-step GMM bootstrap
procedure by Hall and Horowitz (1996), which is denoted HH-Bootstrap in the tables. We
find that the HH-Bootstrap is severely undersized when the number of clusters G is small, for
example, when G is 50 with m = 24 and p = 1—3, the empirical sizes are between 0.2% and 2.0%.
This fragility of the HH-Bootstrap procedure has been also observed by Bond and Windmeijer
(2005) and Windmeijer (2005) in their Monte Carlo analysis of the cross-sectionally independent
dynamic panel data estimated by GMM. They point out that the GMM inferences based on
the bootstrap procedures become less reliable when there is a problem in estimating the GMM
weighting matrix with the sample moment process. Our simulation results extend their findings
in the two-step GMM procedures to those in the presence of clustered dependence. We also note
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that the empirical rejection probabilities of the GMM bootstrap procedure become close to the
nominal size when the reduced set of IV (m = 12) is used or the number of cluster G increases.

Lastly, Tables 1 shows that the finite sample size distortions of the (centered) J test, Jc =
J(θ̂

c

2) are also substantially reduced and close to the nominal size of 5% when we employ the
F critical values instead of the conventional chi-squared critical values and the GMM bootstrap
procedure by Hall and Horowitz (1996).

6.3.2 Power experiment

We investigate the finite sample power performances of the first-step procedure and the two-step
procedures. We use the finite sample critical values under the null, so the power is size-adjusted
and the power comparison is meaningful. The DGPs are the same as before except that the
parameters are generated from the local null alternatives β1 = β10 + c/

√
n for c ∈ [0, 15] and

p = 1. We simulate power curves for the first-step and two-step tests for G ∈ {35, 50, 70, 100}
and L = 50. To save space, we only report the case when G = 35 and 100 in Figures 1 and 2,
respectively. The results first indicate that there is no real difference between power curves of the
modified (F̃2) and unmodified (F2) two-step tests. In fact, some simulation results not reported
here indicate the modified F test can be slightly more powerful as the number of parameters gets
larger. Also, the finite sample corrected test F̃w2 does not lead to a loss of power compared with
the uncorrected one F̃2.

Figures 1—2 also indicate that the two-step tests are more powerful than the first-step tests
in most cases of G,m, and p we consider. The power gain of the two-step GMM procedures
becomes more significant as the number of G increases. This can be justified by the asymptotic
effi ciency of the two-step GMM estimator under the large-G asymptotics. However, under the
fixed-G asymptotics, there is a cost in estimating the CCE weighting matrix, and the power of
first-step procedures might dominate the power of the two-step ones when the cost of employing
CCE weighting matrix outweighs the benefit of estimating it. In fact, Figures 1 shows that the
power of the first-step test can be higher than that of two-step tests when G is small and m is
large, say, for example, G = 35 and m = 24. See Hwang and Sun (2018) who compare these
two types of tests in a time series GMM framework by employing more accurate fixed-smoothing
asymptotics which are in the same spirit of the fixed-G asymptotics.

In sum, our simulation evidence clearly demonstrates the size accuracy of our most refined F
test, F̃w

Ω̂c(θ̂1)
(θ̂
c

2), regardless of whether the number of clusters G is small or moderate.

6.4 Results with unbalanced and heterogeneous clusters

6.4.1 Unbalanced Clusters

Although our fixed-G asymptotics is valid as long as the cluster sizes are approximately equal,
we remain wary of the effect of the cluster size heterogeneity on the quality of the fixed-G
approximation. In this subsection, we turn to simulation designs with heterogeneous cluster
sizes. Each simulated data set consists of 5, 000. Each simulated data set consists of 5, 000
observations that are divided into 50 clusters. The sequence of alternative cluster-size designs
starts by assigning 120 individuals to each of first 10 clusters and 95 individuals to each of next
40 clusters. In each succeeding cluster-size design, we subtract 10 individuals from the second
group of clusters and add them to the first group of clusters. In this manner, we construct a series
of four cluster-size designs, in which the proportion of the samples in the first group of clusters
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grows monotonically from 24% to 48%. The design is similar to Carter, Schnepel and Steigerwald
(2017) which investigates the behavior of cluster-robust t statistic under cluster heterogeneity.
Table 2 describes the unbalanced cluster-size Designs I-IV we consider. All other parameter
values are the same as before.

Tables 3—5 report the empirical sizes of the GMM procedures we considered in the previous
subsections. The results immediately indicate that the two-step tests suffer from severe size
distortion when the conventional chi-squared critical value is employed. For example, under
Design III, the empirical size of the “plain” two-step chi-squared test is 58.6% for m = 24,
and p = 3. This size distortions become more severe when the degree of heterogeneity across
cluster-size increases, e.g., 62.1% for Design IV However, our fixed-G asymptotics still performs
very well even with unbalanced cluster sizes as they substantially reduce the empirical sizes. For
example, under Designs III and IV, the most refined two-step Wald statistic F̃w2 results in the
empirical size 5.8% and 7.4% , respectively, for the above mentioned values of m and p, which
is much closer to the nominal size. Similar results for other types of GMM tests are reported in
Tables 3∼5. The results of J tests are omitted here as they are qualitatively similar to those of
the F tests.

6.4.2 Heterogeneous Clusters

In our last experiments, we investigate how violation of the cluster homogeneity conditions in
Assumptions 4 and 5 impacts the finite sample performance of cluster-robust tests. There are two
important nuisance parameters in the dynamic panel model considered in our simulations−the
spatial autoregressive parameter λ for the innovations {uit, ek,it}, and the autoregressive parame-
ter ρ for the regressors xk,it. Both of these parameter choices affect the variance and Jacobian of
each cluster. To consider the impact of pronounced heterogeneity across clusters, we allow these
parameters to be group specific, i.e. (ρg, λg) for g = 1, . . . , G. The alternative DGPs consider
randomly drawn ρg and λg at each simulations. The probability distributions for (ρg, λg) have two
supports at (0.35, 0.85)2 ∈ R2. Figure 8 shows four specific designs of probability distributions
considered in our simulation. Design 1 describes a mild degree of heterogeneity where the values
for (ρg, λg) slightly deviates from the benchmark value (0.60, 0.60). Designs II-IV illustrate more
substantial levels of heterogeneities, each of which represents a left, right-skewed, and symmet-
ric distribution. To reduce the computational burden, we assume observations are independent
across different clusters. All other settings are same as our original model in subsection 6.3.

With p = 1, we consider the following three types of t-tests. The one-step GMM test, with its
asymptotic critical value tG−1, is referred to BCH. The two-step GMM approach, together with
J-statistics modification and finite-sample corrected variance formula, has asymptotic critical
value tG−q−1 and is refereed to Hwang. Note that both of these tests estimate parameters using
the entire n =

∑G
g=1 Lg observations. The last method is the Fama-Macbeth type procedure in

Ibragimov and Müller (2010, 2016, IM hereafter). The IM’s t-test is formed by a cluster-specific
estimator which only use observations within the cluster. Letting Rθ̂g be the cluster-specific
estimator for each g = 1, . . . , G, the IM’s t-statistic is

tIM =

√
GR(θ̄G − θ0)√∑G

g=1(Rθ̂g −Rθ̄G)2/(G− 1)
,

where θ̄G = G−1
∑G

g=1 θ̂g. IM (2010, 2016) shows that using tIM with critical value tG−1 yields
asymptotically valid inference when our Assumptions 4-5 are violated in the presence of cluster
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heterogeneity.
Setting d = 3, T = 3, G = 35, and L = L1 = . . . = Lg ∈ {50, 100}, the parameters are

estimated by the Arellano-Bond moment conditions with the reduced set of instruments, i.e.
m = 6. It is important to point out that the subsample estimation of θ̂g uses only Lg ∈ {50, 100}
number of cluster-specific observations. Compared to the full-sample GMM approaches that uses
the entire n ∈ {1750, 3500} observations, we conjecture that the IM’s sub-sample estimators are
exposed to more finite-sample bias, especially when the model is over-identified. This motivates
us to also consider an exactly identified moment conditions, i.e. m = d = 3, E[w′it−1∆uit] = 0
with wit = (yit−1, x

′
it )′ in Anderson and Hsiao (1981). The Anderson-Hsiao’s exactly identified

moment condition is used for both one-step GMM (BCH) and sub-sample based t-tests (IM).
Tables 6—7 present empirical sizes, bias, and root mean squared errors (RMSE) of the t-

tests we consider at various degree of heterogeneities in Design I—IV. We first note that, when the
model is over-identified, IM’s sub-sample based approach suffers from severe size distortions in all
simulation designs. This is consistent with our previous conjecture−the large finite sample biases
in the cluster-specific estimators have negative impacts on corresponding t-test’s performances.
The full-sample GMM approaches in BCH and Hwang also suffer from size distortions as we move
away from the mild degree of heterogeneity in Design I. Table 6 shows that the amount of size
distortions in Hwang is much smaller than that of IM. Also, compared to the one-step GMM test
in BCH, Hwang’s two-step GMM approaches results in smaller size distortions. For example,
in Design IV with L = 50, the empirical size of Hwang is 10% while those of BCH and IM
with over-identifications are 13.2% and 72%, respectively. When the model is exactly identified,
however, the size distortions no longer present for IM. For example, Table 6 indicates that the
empirical sizes of the exactly identified IM’s test are below 5% at all degrees of heterogeneities
in Design I—IV. However, we note that this reduction in size distortions comes at the sacrifice of
using the exactly-identified instruments (Anderson-Hsiao estimator) instead of the over-identified
instruments (Arellano-Bond estimator), which results in a huge loss of effi ciency. For example,
Table 6 indicates that in Design IV, IM has 3.0% empirical size with corresponding 1.774 of
RMSE, while Hwang has 9.3% of empirical size with 0.386 of RMSE. Lastly, we find that the
performances of all of the considered t-tests are improved when the size of the clusters L increases.

Overall, the results of our simulations indicate that neither our full-sample GMM tests nor
the sub-sample based tests in IM dominate the other one, and they are best described as com-
plementary approaches. If one mainly concerns about the size accuracy of the GMM parameter
test under pronounced cluster heterogeneity, the sub-sample based IM’s approach is preferred.
However, when there is a mild degree of heterogeneities, or we want to increase the accuracy of
point-estimators, our full-sample based effi cient GMM estimation and corresponding finite-sample
corrected t-tests are preferred.

7 Empirical Application

In this section, we employ the proposed procedures to revisit the study of Emran and Hou (2013,
The Review of Economics and Statistics) in development economics. The study investigates the
causal effects of access to domestic and international markets on rural household consumption.
They use a survey data of 7998 rural households from the Chinese Household Income Project
(ICPSR 3012) in 1995.The data set is downloadable from the journal website.10

10https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CWFOFN
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7.1 Model and choice of clusters

The regression equation for per capita consumption for household i, Ci, in 1995 (yuan) is specified
as

Ci = β0 + βdA
d
i + βsA

s
i + βds(A

d
i ×Asi ) +X ′iβh (32)

+Xv′
i βv +Xc′

i βc + αp + εi,

where Adi and A
s
i are the log distances of access to domestic (km) and international markets (km),

respectively. Xi is the vector of household characteristics that may affect consumption choice,
and Xv

i , X
c
i are village, county level controls, respectively, which capture the heterogeneity in

economic environments across different regions, and αp is the province level fixed effect.
Among the unknown parameters in vector θ = (β0, β

′
m, β

′
h, β

′
v, β
′
c, α, )

′ ∈ Rd, our focus of
interest is βm = (βd, βs, βds)

′ which measures the casual effect of access to domestic and in-
ternational markets on household consumption in the rural areas. To identify these parameters,
Emran and Hou (2013) employs geographic instrumental variables that capture exogenous varia-
tions in access to markets, e.g., straight-line distances to the nearest navigable river and coastline,
along with the topographic and agroclimatic features of the counties.11 There are 21 instrument
variables and 31 control variables in their IV regressions, including province dummy variables,
so that the number of moment conditions m is 52, and the number of estimated parameters d is
34.The corresponding degree of over-identification q is 18.

Because of the close economic and cultural ties within the same county in rural Chinese areas,
the study clusters the data by the county level and estimates the model using 2SLS and two-
step GMM with uncentered cluster-robust weighting matrix. The data set consists of n = 7462
observations divided into G = 86 clusters, where the number of households vary across from a low
of 49 to a high of 270 with the average size of cluster L̄ = 87. Instead of the county-level clustering,
one might want to check whether a finer clustering at the level of individuals is innocuous. As for
a diagnostic test, we implement a testing for the appropriate level of clustering, which is recently
proposed by Ibragimov and Müller (2016). The test considers a practically very plausible scenario
that empirical researchers may face − a choice between a small number of coarse clusters, e.g.,
county level cluster, and a large number of the finer level of clusters, e.g., individual level. The
null hypothesis is that a finer level of clustering is appropriate with consistent CCE estimators,
against the alternative that the only fewer clusters provide valid information. The suggested test
obtains the critical value by a simulation algorithm provided in Ibragimov and Müller (2016).
The detailed algorithms for Ibragimov and Müller (2016)’s test are described in supplementary
Appendix B.9.

Table 8 reports the results of significance tests of the validity of fine level (individual level)
of clustering. Since Ibragimov and Muller (2016)’s test depends on a variable of interest in
regression equation (32), we provide corresponding test statistics and critical values for the three
key variables Ad, As, and Ads. The results in Table 8 indicate that at all three variables of
interests, we reject the validity of clustering at the level of the individual at 5% significance,
against the coarser clustering at county level. These results might not be too surprising, as rural
individuals are closely connected within each county with economic and cultural ties, which, in
turn, might well lead to non-trivial interactions.

11For the detailed description of the control variables and instrument variables, see the appendix in Emran and
Hou (2013).
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7.2 Results

Since the statistical inferences in Emran and Hou (2013) are conducted using the large-G asymp-
totics only, we apply our more accurate fixed-G asymptotics to their study. The 2SLS (one-step
GMM) test together with degrees of freedom correction uses critical value tG−1. For the two-step
GMM procedures, we implement the recommended fixed-G test in our paper, which includes the
degree-of-freedom correction, the J correction, and the finite sample corrected variance correc-
tions and use the tG−1−q critical value. Table 9 shows the point estimation results, standard
error estimates, and associated confidence intervals (CIs) for each of 2SLS and the uncentered
and centered two-step GMM estimators. Similar to Emran and Hou (2013), our results show
that the better access to domestic and international markets has a substantial positive effect
on household consumption, and that the domestic market effect is significantly higher. For the
2SLS method, there are no much differences in confidence interval and standard error between
the large-G and fixed-G results. This is well expected because the number of clusters G = 86 is
large enough so that the large-G and fixed-G approximations are close to each other.

The uncentered two-step GMM estimate of the effect of access to domestic market is βd =
−2722.22. The reported standard error 400.5 is about 40% smaller than that of 2SLS. However,
the plain two-step standard error estimate might be downward biased because the variation of the
cluster-robust weighting matrix is not considered. The centered two-step GMM estimator gives a
smaller effect of market access βd = −2670.0 with the modified standard error of 519.2, which is
25% larger than the plain two-step standard error. However, the modified standard error is still
smaller than that based on the 2SLS method. So the two-step estimator still enjoys the benefit
of using the cluster-robust weighting matrix. The results for other parameters deliver similar
qualitative messages. Table 9 also provides the finite sample corrected standard error estimates
of two-step estimators that capture the extra variation of feasible CCE, leading to slightly larger
standard errors and wider CIs than the uncorrected ones. Overall, our results suggest that the
effect of access to markets may be lower than the previous finding after we take into account the
randomness of the estimated optimal GMM weighting matrix.

8 Conclusion

This paper studies GMM estimation and inference under clustered dependence. To obtain more
accurate asymptotic approximations, we utilize an alternative asymptotics under which the sam-
ple size of each cluster is growing, but the number of cluster size G is fixed. The paper is
comprehensive in that it covers the second-step GMM as well as the first-step GMM estimators.
For the two-step GMM estimator, we show that only if centered moment processes are used in
constructing the weighting matrix can we obtain asymptotically pivotal Wald statistic and t sta-
tistic. With the help of the standard J statistic, the Wald statistic and t statistic based on these
estimators can be modified to have to standard F and t limiting distributions. A finite sample
variance correction is suggested to further improve the performance of the asymptotic t and F
tests.

Our simulation evidence and empirical application demonstrate the size accuracy of the two-
step GMMWald and t test statistics coupled with the J statistic modification, degrees-of-freedom
correction, and finite-sample corrected variance estimator. The tests are very appealing to prac-
titioners because they can implement the standard t and F critical values to the finite-sample
corrected test statistics. No further simulations or re-sampling methods are needed. We recom-
mend practitioners to use these statistics.
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Table 1: Empirical size of GMM tests based on the centered CCE when the number of clusters
G = 50, 100, the number of population within cluster L = 50, the number of joint hypothesis
p = 1 ∼ 3, and the number of moment conditions m = 12, 24, with T = 4.

G = 50 Test statistic Critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

First-step F1 χ1−α
p /p 0.240 0.247 0.242 0.188 0.178 0.176

G−p
G F1 F 1−α

p,G−p 0.220 0.212 0.191 0.171 0.145 0.133

F2 χ1−α
p /p 0.320 0.439 0.535 0.137 0.171 0.202

Two-step F̃2 F 1−α
p,G−p−q 0.073 0.063 0.061 0.064 0.059 0.058

F̃W
2 F 1−α

p,G−p−q 0.063 0.054 0.053 0.053 0.050 0.049

F2 HH-Bootstrap 0.020 0.004 0.002 0.048 0.043 0.033
J test Jc χ1−α

q /q − 0.566 − − 0.150 −
G−q
Gq J

c F 1−α
q,G−q − 0.059 − − 0.055 −

Jc HH-Bootstrap − 0.296 − − 0.116 −
Test

G = 100 statistics Critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

First-step F1 χ1−α
p /p 0.167 0.158 0.154 0.150 0.130 0.134

G−p
G F1 F 1−α

p,G−p 0.159 0.145 0.132 0.142 0.118 0.114

F2 χ1−α
p /p 0.167 0.201 0.237 0.094 0.105 0.120

Two-step F̃2 F 1−α
p,G−p−q 0.074 0.067 0.066 0.066 0.059 0.060

F̃W
2 F 1−α

p,G−p−q 0.070 0.061 0.059 0.058 0.051 0.055

F2 HH-Bootstrap 0.051 0.042 0.035 0.053 0.048 0.051
J test Jc χ1−α

q /q − 0.256 − − 0.098 −
G−q
G Jc F 1−α

q,G−q − 0.057 − − 0.056 −
Jc HH-Bootstrap − 0.197 − − 0.091 −

Notes: The first-step tests are based on the first-step GMM estimator θ̂1 with the associated F statistic
F1 = F1(θ̂1). The J tests employ the statistics Jc = J(θ̂

c

2) with or without degree of freedom (d.f.)
correction. All two-step tests are based on the centered two-step GMM estimator θ̂

c

2 but use different test
statistics: the unmodified F2= F Ω̂c(θ̂1)(θ̂

c

2), J statistic and d.f. corrected F̃2= F̃ Ω̂c(θ̂1)(θ̂
c

2), and J statistic,

d.f., and finite-sample-variance corrected F̃W
2 = F̃W

Ω̂c(θ̂1)
(θ̂
c

2).
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Figure 1: Size-adjusted power of the first-step (2SLS) and two-step tests with G=35 and L=50.
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Figure 2: Size-adjusted power of the first-step (2SLS) and two-step tests with G = 100 and
L = 50.
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Table 2: Design of unbalanced cluster size

G = 50 L1 = ... = L10 L11 = ... = L50 n

Design I 120 95 5000
Design II 160 85 5000
Design III 200 75 5000
Design IV 240 65 5000

Table 3: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Design I

Unbalanced sizes in clusters: Design I
Test statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
First-step F1 χ1−α

p /p 0.169 0.170 0.170 0.152 0.142 0.152
G−p
G F1 F1−α

p,G−p 0.155 0.140 0.125 0.137 0.117 0.109

F2 χ1−α
p /p 0.307 0.441 0.545 0.139 0.173 0.210

Two-step F̃2 F1−α
p,G−p−q 0.071 0.069 0.070 0.065 0.062 0.066

F̃ w
2 F1−α

p,G−p−q 0.054 0.051 0.051 0.049 0.051 0.051

F2 HH-Bootstrap 0.015 0.005 0.000 0.042 0.033 0.032
J test Jc χ1−α

q /q − 0.571 − − 0.157 −
G−q
Gq J

c F1−α
q,G−q − 0.053 − − 0.056 −

Jc HH-Bootstrap − 0.275 − − 0.102 −
See footnote to Table 1.
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Table 4: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Designs II and III

Unbalanced sizes in clusters: Design II
Test statistic Critical values m = 24 m = 12

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
First-step F1 χ1−α

p /p 0.172 0.168 0.172 0.154 0.144 0.151
G−p
G F1 F1−α

p,G−p 0.157 0.137 0.124 0.138 0.116 0.111

F2 χ1−α
p /p 0.304 0.394 0.482 0.147 0.173 0.211

Two-step F̃2 F1−α
p,G−p−q 0.076 0.075 0.071 0.069 0.069 0.068

F̃ w
2 F1−α

p,G−p−q 0.057 0.054 0.049 0.056 0.052 0.054

F2 HH-Bootstrap 0.015 0.003 0.000 0.040 0.034 0.030
J test Jc χ1−α

q /q − 0.593 −− − 0.163 −
G−q
Gq J

c F1−α
q,G−q − 0.068 − − 0.058 −−

Jc HH-Bootstrap − 0.292 − − 0.102 −
Unbalanced sizes in clusters: Design III

Test statistic Critical values m = 24 m = 12
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

First-step F1 χ1−α
p /p 0.173 0.174 0.180 0.154 0.148 0.158

G−p
G F1 F1−α

p,G−p 0.160 0.140 0.133 0.141 0.122 0.117

F2 χ1−α
p /p 0.336 0.469 0.586 0.153 0.193 0.242

Two-step F̃2 F1−α
p,G−p−q 0.084 0.081 0.084 0.072 0.071 0.075

F̃ w
2 F1−α

p,G−p−q 0.060 0.057 0.058 0.057 0.054 0.057

F2 HH-Bootstrap 0.013 0.003 0.000 0.040 0.033 0.026
J test Jc χ1−α

q /q − 0.640 − − 0.182 −
G−q
Gq J

c F1−α
q,G−q − 0.085 − − 0.070 −

Jc HH-Bootstrap − 0.328 − − 0.110 −
See footnote to Table 1.
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Table 5: Empirical size of first-step and two-step tests based on the centered CCE when there is
a heterogeneity in cluster size: Design IV

Unbalanced sizes in clusters: Design IV
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

First-step F1 χ1−α
p /p 0.178 0.180 0.188 0.158 0.152 0.169

G−p
G F1 F1−α

p,G−p 0.160 0.148 0.142 0.142 0.128 0.123

F2 χ1−α
p /p 0.360 0.511 0.621 0.165 0.218 0.271

Two-step F̃2 F1−α
p,G−p−q 0.091 0.095 0.100 0.082 0.086 0.099

F̃ w
2 F1−α

p,G−p−q 0.071 0.072 0.074 0.067 0.069 0.076

F2 HH-Bootstrap 0.011 0.003 0.001 0.041 0.034 0.030
J test Jc χ1−α

q /q − 0.709 − − 0.206 −
G−q
Gq J

c F1−α
q,G−q − 0.131 − − 0.084 −

Jc HH-Bootstrap − 0.380 − − 0.111 −
See footnote to Table 1.

Design of heterogenous clusters: Probability distributions for heteregeneous (ρg, λg)
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Table 6: Empirical size, bias, RMSE of GMM t-tests for heterogeneous clusters with G = 35 and
L = 50

d = 3 and T = 3

Heterogeneous Clusters: Design I
Tests Bias RMSE Size

Exactly-identified GMM BCH -0.080 1.283 0.075
(m = 3) IM -0.091 1.542 0.035

BCH -0.075 0.180 0.084
Over-identified GMM IM -0.236 0.249 0.829

(m = 6) Hwang -0.037 0.164 0.046
Heterogeneous Clusters: Design II

Tests Bias RMSE Size
Exactly-identified GMM BCH -0.096 1.149 0.059

(m = 3) IM -0.139 1.567 0.031
BCH -0.194 0.352 0.130

Over-identified GMM IM -0.217 0.233 0.846
(m = 6) Hwang -0.146 0.346 0.102

Heterogeneous Clusters: Design III
Tests Bias RMSE Size

Exactly-identified GMM BCH -0.075 1.175 0.039
(m = 3) IM -0.089 1.774 0.030

BCH -0.231 0.392 0.123
Over-identified GMM IM -0.246 0.265 0.713

(m = 6) Hwang -0.186 0.386 0.093
Heterogeneous Clusters: Design IV

Tests Bias RMSE Size
Exactly-identified GMM BCH -0.080 1.217 0.042

(m = 3) IM -0.120 1.690 0.031
BCH -0.224 0.385 0.132

Over-identified GMM IM -0.229 0.246 0.717
(m = 6) Hwang -0.177 0.380 0.100

Notes: BCH’s tests are based on the first-step GMM estimator θ̂1 with the associated t statistic t1 = t1(θ̂1)

and critical value tG−1. IM’s tests are based on t-statistics of cluster specific estimators θ̂g and critical
value tG−1. Hwang’s tests are based on the centered two-step GMM estimator θ̂

c

2 with finite-sample-
variance corrected t̃w2 = t̃w

Ω̂c(θ̂1)
(θ̂
c

2) and critical value tG−q−1. The exactly-identified moment condition is

constructed using Anderson and Hsiao (1981)’s instrument variables. The over-identified moment condition
is constructed from Arellano-Bond (1991)’s instruments using the most recent lag.
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Table 7: Empirical size, bias, RMSE of GMM t-tests for heterogeneous clusters with G = 35 and
L = 100

d = 3 and T = 3

Heterogeneous Clusters: Design I
Tests Bias RMSE Size

Exactly-identified GMM BCH -0.131 1.357 0.098
(m = 3) IM -0.107 1.380 0.032

BCH -0.038 0.117 0.073
Over-identified GMM IM -0.228 0.238 0.892

(m = 6) Hwang -0.014 0.109 0.044
Heterogeneous Clusters: Design II

Tests Bias RMSE Size
Exactly-identified GMM BCH -0.067 1.170 0.069

(m = 3) IM -0.150 1.603 0.034
BCH -0.134 0.276 0.122

Over-identified GMM IM -0.206 0.219 0.797
(m = 6) Hwang -0.086 0.268 0.084

Heterogeneous Clusters: Design III
Tests Bias RMSE Size

Exactly-identified GMM BCH -0.093 1.222 0.049
(m = 3) IM -0.116 1.835 0.025

BCH -0.179 0.322 0.113
Over-identified GMM IM -0.245 0.261 0.793

(m = 6) Hwang -0.130 0.312 0.085
Heterogeneous Clusters: Design IV

Tests Bias RMSE Size
Exactly-identified GMM BCH -0.099 1.213 0.055

(m = 3) IM -0.116 1.765 0.028
BCH -0.165 0.314 0.115

Over-identified GMM IM -0.222 0.237 0.783
(m = 6) Hwang -0.118 0.303 0.087

Notes: See footnote to Table 6.
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Table 8: Test of the appropriate level of clustering

Test of validity of fine clustering
H0 : Both individual (fine) and county (coarse) clusterings are valid.
H1 : Only county (coarse) clustering is valid.

Variable of interests
· Ad As Ads

Test statistic 504,156.2 429,620.7 12,225.1
5% Critical value 138,547.3 109,723.0 1,288.7

p-value 0.00% 0.00% 0.00%

Notes: The test statistics, corresponding critical values, and p-values are constructed for each variable
of interests in (32). For all considered tests, the test statistics and critical values are calculated by the
Ibragimov and Müller (2016)’s method.

Table 9: Results for Emran and Hou (2013) data

2SLS
Variables Large-G asymptotics fixed-G asymptotics

Domestic market (Adi ) −2713.2 (712.1) −2713.2 (716.8)
[−4109.9,−1316.4] [−4138.0,−1288.0]

International market (Asi ) −1993.5 (514.8) −1993.5 (517.9)
[−3002.5,−984.4] [−3023.10,−963.8]

Interaction (Adi ×Asi ) 345.8 (105.0) 345.8 (105.6)
[140.0, 551.7] [135.8, 555.9]

H0 : βd = βs −2.3218 (2.02%) −2.771 (2.26%)

Two-step GMM
Variables Large-G asymptotics fixed-G asymptotics

Domestic market (Adi ) −2722.8 (400.5) −2670.0 (520.7)
[−3507.7,−1937.9] [−3709.2,−1630.7]

International market (Asi ) −2000.2 (344.3) −1981.3 (447.7)
[−2675.0,−1325.5] [−2874.9,−1087.7]

Interaction (Adi×Asi ) 362.7 (68.7) 364.1 (89.4)
[228.0, 497.3] [187.5, 542.4]

H0 : βd = βs −5.239 (0%) −3.3217 (0%)
J statistic (q = 18) 1.1708 (99.8%) 0.3096 (45.83%)

Notes: Standard errors for 2SLS and the weighting matrix for (centered) two-step GMM estimators are
clustered at the county level. Numbers in parentheses are standard errors and intervals are 95% confidence
intervals. For hypothesis testing, the numbers in parentheses are p-values.
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Appendix of A: Proofs of main results

Proof of Proposition 1. Part (a). For each g = 1, ..., G,

1√
L̄

Lg∑
i=1

fgi (θ̂1) =
1√
L̄

Lg∑
i=1

{
fgi (θ0) +

∂fgi (θ̃
∗
)

∂θ′
(θ̂1 − θ0)

}
,

where θ̃
∗
is between θ̂1 and θ0. Here, θ̃

∗
may be different for different rows of ∂fgi (θ̃

∗
)/∂θ′. For

notational simplicity, we do not make this explicit. Also, standard asymptotic arguments give

θ̂1 − θ0 = (Γ′W−1Γ)−1Γ′W−1gn(θ0) + op

(
1√
n

)

= (Γ′W−1Γ)−1Γ′W−1 1

G

G∑
g=1

1

L̄

 Lg∑
i=1

fgi (θ0)

+ op

(
1√
L̄

)
,

as n→∞ holding G fixed. Combining these results together, we have

1√
L̄

Lg∑
i=1

fgi (θ̂) =
1√
L̄

Lg∑
i=1

fgi (θ0)− 1

L̄

Lg∑
k=1

∂fgk (θ̃
∗
)

∂θ′
(Γ′W−1Γ)−1Γ′W−1 1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ0)

+ op (1)

=

√
Lg
L̄
· 1√

Lg

Lg∑
i=1

fgi (θ0)− Lg
L̄

 1

Lg

Lg∑
i=1

∂fgi (θ̃
∗
)

∂θ′

 (Γ′W−1Γ)−1Γ′W−1

× 1

G

G∑
g̃=1

√Lg
L̄
· 1√

Lg

Lg∑
i=1

fgi (θ0)

+ op (1)

=
1√
Lg

Lg∑
i=1

fgi (θ0)− Γg(Γ
′W−1Γ)−1Γ′W−1 1

G

G∑
g=1

 1√
Lg

Lg∑
i=1

fgi (θ0)

+ op (1) , (33)

where the last equality follows by Assumption 1-iii) and Assumption 3. Using Assumption 1-ii)
and Assumption 5, we then obtain

1√
L̄

Lg∑
i=1

fgi (θ̂1)
d→ ΛBm,g − Γg(Γ

′W−1Γ)−1Γ′W−1ΛB̄m

= ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m,

where B̄m := G−1
∑G

g=1Bm,g. It follows that

Γ̂(θ̂1)′W−1
n

1√
L̄

Lg∑
i=1

fgi (θ̂1)
d→ Γ′W−1

[
ΛBm,g − Γ(Γ′W−1Γ)−1Γ′W−1ΛB̄m

]
= Γ′W−1ΛBm,g − Γ′W−1ΛB̄m = Γ′W−1Λ

(
Bm,g − B̄m

)
.
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Thus, the scaled CCE matrix converges in distribution to a random matrix:

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)

=
1

G

G∑
g=1

Γ̂(θ̂1)′W−1
n

 1√
L̄

Lg∑
k=1

fgk (θ̂1)

 1√
L̄

Lg∑
k=1

fgk (θ̂1)

′W−1
n Γ̂(θ̂1)


d→ Γ′W−1Λ

 1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′(Γ′W−1Λ
)′
.

Therefore,

n ·Rv̂ar(θ̂1)R′ = R
[
Γ̂(θ̂1)′W−1

n Γ̂(θ̂1)
]−1 [

Γ̂(θ̂1)′W−1
n Ω̂(θ̂1)W−1

n Γ̂(θ̂1)
] [

Γ̂(θ̂1)′W−1
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]−1
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[
Γ′W−1Γ

]−1
Γ′W−1Λ
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(
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Bm,g − B̄m

)′ΛW−1Γ
[
Γ′W−1Γ

]−1
R′ + op(1)

= R̃

 1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′ R̃′ + op(1),

where R̃ := R
[
Γ′W−1Γ

]−1
Γ′W−1Λ. Also, it follows by Assumption 1-ii) and iii) that

√
n(Rθ̂1 − r) = −R(Γ′W−1Γ)−1Γ′W−1√ngn(θ0) + op(1)

= −R(Γ′W−1Γ)−1Γ′W−1 1√
G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ0)

+ op(1)

d→ −R̃ 1√
G

G∑
g=1

Bm,g = −R̃
√
GB̄m.

Combining the results so far yields:

F (θ̂1)
d→ 1

p

(
R̃
√
GB̄m

)′R̃ 1

G

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′


−1

R̃
√
GB̄m = F1∞.

Define the p × p matrix Λ̃ such that Λ̃Λ̃′ = R̃R̃′. Then we have the following distributional
equivalence[

R̃
√
GB̄m, R̃G−1

G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′
R̃′

]
d
=
[ √

GΛ̃B̄p, Λ̃S̄ppΛ̃′
]
.

Using this, we get

F1∞
d
=
G

p
· B̄′pS̄−1

pp B̄p

as desired for Part (a). Part (b) can be similarly proved.
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Proof of Lemma 7. The centered CCE Ω̂c(θ̃) can be represented as:

Ω̂c(θ̃) =
1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ̃)− 1

n
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Lg∑
i=1

fgi (θ̃)
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L̄

Lg∑
i=1

fgi (θ̃)− 1

n

G∑
g=1

Lg∑
i=1

fgi (θ̃)

′ .

To prove Part (a), it suffi ces to show that

1√
L̄

Lg∑
i=1

fgi (θ̃)− 1

n

G∑
g=1

Lg∑
i=1

fgi (θ̃)
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1√
L̄

Lg∑
i=1

fgi (θ0)− 1

n

G∑
g=1

Lg∑
i=1

fgi (θ0)

 (1 + op(1)) (34)

holds for each g = 1, ..., G. By Assumption 3 and Taylor expansion, we have

1√
L̄

Lg∑
i=1

fgi (θ̃) = (1 + op(1))

 1√
L̄

Lg∑
i=1

fgi (θ0) +
1

L̄
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i=1

∂fgi (θ̃)

∂θ′

√
L̄(θ̃ − θ0)

 .

Using
√
n(θ̃ − θ0) = Op(1), and Assumptions 1-iii) and 4, we have

1√
L̄

Lg∑
i=1

fgi (θ̃) = (1 + op(1))

 1√
L̄

Lg∑
i=1

fgi (θ0) + Γ
√
L̄(θ̃ − θ0)


for each g = 1, ..., G. It then follows that

1√
L̄

Lg∑
i=1

fgi (θ̃)− 1

n

G∑
g=1

Lg∑
i=1

fgi (θ̃)

 =
1√
L̄

Lg∑
i=1

fgi (θ̃)− Lg
n

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ̃)


=

1√
L̄

Lg∑
i=1

fgi (θ̃)− 1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ̃)

 (1 + op(1))

=

 1√
L̄

Lg∑
i=1

fgi (θ0)− 1

G

G∑
g=1

1√
L̄

Lg∑
i=1

fgi (θ0)

 (1 + op(1)),

which completes the proof of part (a).
To prove Part (b), we apply the CLT in Assumption 1-ii) together with Assumptions As-

sumption 1-iii) and 5 to obtain:

1√
L̄

Lg∑
i=1

fgi (θ0)− 1

G

G∑
g=1

1√
L̄

Lg∑
i=1

fgi (θ0)

=

 1√
Lg

Lg∑
i=1

fgi (θ0)− 1

G

G∑
g=1

1√
Lg

Lg∑
i=1

fgi (θ0)

 (1 + op(1))

d→ Λ
(
Bm,g − B̄m

)
,
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where the convergence holds jointly for g = 1, ..., G. As a result,

Ω̂c(θ0)
d→ 1

G
Λ

 G∑
g=1

(
Bm,g − B̄m

) (
Bm,g − B̄m

)′Λ′.

Proof of Theorem 10. Define B′q = (B′q,1, ..., B
′
q,G)′ and denote

vg =
(
Bq,g − B̄q

)′  G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′−1

B̄q.

Then, the distribution of
√
GS̄pqS̄−1

qq B̄q conditional on Bq can be represented as

√
G

 G∑
g=1

(
Bp,g − B̄p

) (
Bq,g − B̄q

)′ G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′−1

B̄q

=
√
G

G∑
g=1

(
Bp,g − B̄p

)
vg =

√
G

G∑
g=1

Bp,gvg −
√
GB̄p

G∑
g=1

vg

d
= N

0, G
G∑
g=1

v2
g · Ip

 ,

where the last line holds because
∑G

g=1 vg = 0. Note that

G
G∑
g=1

v2
g = G

G∑
g=1

(Bq,g − B̄q)′
 G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′−1

B̄q

× B̄′q

 G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′−1 (
Bq,g − B̄q

)
= GB̄′q

 G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′−1  G∑
g=1

(
Bq,g − B̄q

)

×
(
Bq,g − B̄q

)′] G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′ B̄q
= B̄′q

 G∑
g=1

(
Bq,g − B̄q

) (
Bq,g − B̄q

)′
/G

−1

B̄q

= B̄′qS̄−1
qq B̄q.

So conditional on Bq,
√
GS̄pqS̄−1

qq B̄q is distributed as N(0, B̄′qS̄−1
qq B̄q · Ip). It then follows that the

distribution of
√
G(B̄p − S̄pqS̄−1

qq B̄q) conditional on Bq is
√
G
(
B̄p − S̄pqS̄−1

qq B̄q
)
∼ N

(
0, (1 + B̄′qS̄−1

qq B̄q) · Ip
)
,
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using the independence of B̄p from S̄pqS̄−1
qq B̄q conditional on Bq. Therefore the conditional dis-

tribution of ξp is

ξp :=

√
G(B̄p − S̄pqS̄−1

qq B̄q)√
1 + B̄′qS̄

−1
qq B̄q

∼ N(0, Ip).

Given that the conditional distribution of ξp does not depend on Bq, the unconditional distribu-
tion of ξp is also N(0, Ip).

Using ξp ∼ N(0, Ip), S̄pp·q ∼ G−1Wp(G− q − 1, Ip), and ξp which is independent of S̄pp·q, we
have

ξ′p

(
GS̄pp·q

G− q − 1

)−1

ξp ∼ Hotelling’s T 2 distribution T 2
p,G−q−1.

It then follows that
G− p− q

p (G− q − 1)
ξ′p

(
GS̄pp·q

G− q − 1

)−1

ξp ∼ Fp,G−p−q.

That is,
G− p− q

pG
ξ′pS̄−1

pp·qξp ∼ Fp,G−p−q.

Together with Proposition 8(a) and (c), this completes the proof of the F limit theory. The proof
of the t limit theory is similar and is omitted here.
Proof of Theorem 13.

We first show that Ên = E2n (1 + op (1)) . For each j = 1, ..., d, we have

Ên[., j] =

{
Γ̂′
[
Ω̂c(θ̂1)

]−1
Γ̂

}−1

Γ̂′
[
Ω̂c(θ̂1)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
gn(θ̂

c

2)

=

{
Γ′
[
Ω̂c(θ0)

]−1
Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
gn(θ̂

c

2)(1 + op(1)),

where the second equality holds by Assumption 3, 4 and Lemma 7. Using a Taylor expansion,
we have

gn(θ̂
c

2) = gn(θ0)− Γ

{
Γ′
[
Ω̂c(θ0)

]−1
Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1
gn(θ0)(1 + op(1)).

Thus,

Ên[., j] =

{
Γ′
[
Ω̂c(θ0)

]−1
Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ0)

]−1
gn(θ0)(1 + op(1))

−
{

Γ′
[
Ω̂c(θ0)

]−1
Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1 ∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ0)

]−1
Γ

×
{

Γ′
[
Ω̂c(θ0)

]−1
Γ

}−1

Γ′
[
Ω̂c(θ0)

]−1
gn(θ0)

}
(1 + op(1)),
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for each j = 1, ..., d. For the term, ∂Ω̂c(θ)
∂θj

∣∣∣
θ=θ̂1

, recall that

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ) =
1

n

G∑
g=1

 Lg∑
i=1

(
fgi (θ)− 1

n

n∑
i=1

fi(θ)

) Lg∑
i=1

(
∂fgk (θ)

∂θj
− 1

n

n∑
i=1

∂fi(θ)

∂θj

)′ .
It remains to show that Υj(θ̂1) = Υj(θ0)(1 + op(1)). From the proof of Lemma 7, we have

1√
L̄

Lg∑
i=1

(
fgi (θ̂1)− 1

n

n∑
i=1

fi(θ̂1)

)

=
1√
L̄

Lg∑
i=1

(
fgi (θ0)− 1

n

n∑
i=1

fi(θ0)

)
(1 + op(1)), (35)

for each g = 1, ..., G. By Assumption 3, 6 and a Taylor expansion, we have:

1√
L̄

Lg∑
i=1

∂fgi (θ̂1)

∂θj
=

 1√
L̄

Lg∑
i=1

∂fgi (θ0)

∂θj
+

1

L̄

Lg∑
i=1

∂

∂θ′

(
∂fgi (θ0)

∂θj

)√
L̄(θ̂1 − θ0)

 (1 + op(1))

:=

 1√
L̄

Lg∑
i=1

∂fgk (θ0)

∂θj
+Q(θ0)

√
L(θ̂1 − θ0)

 (1 + op(1)),

for j = 1, ..., d and g = 1, ..., G. This implies that

1√
L̄

Lg∑
i=1

(
∂fgi (θ̂1)

∂θj
− 1

n

n∑
i=1

∂fi(θ̂1)

∂θj

)
=

1√
L̄

Lg∑
i=1

(
∂fgk (θ0)

∂θj
− 1

n

n∑
i=1

∂fi(θ0)

∂θj

)
(1 + op(1)).

Combining these together, we have Υ(θ̂1) = Υ(θ0)(1 + op(1)) from which we obtain the desired
result

Ên = E2n (1 + op (1)) . (36)

Now, define the infeasible corrected variance

v̂arw,inf
Ω̂c(θ̂1)

(θ̂
c

2)

= v̂arΩ̂c(θ̂1)(θ̂
c

2) + E2nv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)E ′2n + E2nv̂ar(θ̂1)Ê ′2n,

and the corresponding infeasible Wald statistic

Fw,inf
Ω̂c(θ̂1)

(θ̂
c

2) =
1

p
(Rθ̂

c

2 − r)′
[
Rv̂arw,inf

Ω̂c(θ̂1)
(θ̂
c

2)R′
]−1

(Rθ̂2 − r).

The result in (36) implies

Fw,inf
Ω̂c(θ̂1)

(θ̂
c

2) = Fw
Ω̂c(θ̂1)

(θ̂
c

2)(1 + op(1)).
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Also, E2n = op(1) and we have

v̂arw,inf
Ω̂c(θ̂1)

(θ̂
c

2) = v̂arw
Ω̂c(θ̂1)

(θ̂
c

2)(1 + op(1)) = v̂arΩ̂c(θ̂1)(θ̂
c

2)(1 + op(1)),

and so
Fw,inf

Ω̂c(θ̂1)
(θ̂
c

2) = Fw
Ω̂c(θ̂1)

(θ̂
c

2) + op(1) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1),

as desired.
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