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Appendix B: Supplemental Material

B.1 Clustered (Grouped) dependence in spatial setting

In this subsection, we provide a set of primitive conditions and prove the key conditions used in the
main body of the paper to establish the GMM theory under fixed-G asymptotics. The two main
results that we investigate are the joint central limit theorem (CLT) condition in Assumption
1-ii) and the uniform law of large number (ULLN) for the Jacobian process in Assumption 3-i).
Relating our work to existing literature of spatial econometrics, Conley (1999) considers weakly
dependent spatial random fields and develops an asymptotic theory for GMM estimation, but does
not have cluster or group structure. Bester, Conley, and Hansen (2011, BCH hereafter), which
is closely related to our clustered structure, considers a spatial setting with group structure and
makes an essential contribution toward providing a set of regularity conditions that are suffi cient
to obtain their fixed-G limiting distributions. However, the asymptotic theory developed in BCH
(2011) is only applicable to the exactly linear regression model, and it thus is limited to apply
our GMM setting with potentially non-linear moment conditions. Also, BCH (2011) assumes the
exactly equal cluster size, whereas we allow the cluster sizes to be unbalanced.

We follow Jenish and Prucha (2009, JP hereafter) and consider a generic spatial random filed
{Yi,n}i∈Bn which is located on a sampling region Bn. We assume that the sampling region Bn
has n observations, and Bn is a finite subset of Zv, where Zv is a (possibly unevenly spaced) v-
dimensional integer lattice which grows uniformly in v non-opposing directions, as n→∞. The
clustered structure in spatial setting means that the spatial process {f(Yi,n, θ), i ∈ Bn} can be
partitioned G sub-sampling regions in Bn = ∪Gg=1Gg,n, i.e.

{f(Yi,n, θ), i ∈ Bn} = ∪Gg=1{fi,n(θ) : i ∈ Gg,n}2.

For given sub-sampling region G ⊆ Bn, we use |G| to refer the number of samples in the region,
e.g. |Bn| = n and |Gg,n| = Lg. We also assume that Zv is equipped with the matrix function
dist(i, j) = max{|i1−j1|, . . . , |iv−jv|} for any two i = (i1, . . . , iv)

′ and j = (j1, . . . , jv)
′ in Zv. The

distance between any subsets U, V ⊂ Rv is then defined dist(U, V ) = min{dist(i, j); i ∈ U and
j ∈ V }. All elements in Bn are assumed to be located at minimum distance of d0 ≥ 1 uniformly
over sample size n. Without loss of generality, we assume that the minimum distance d0 = 1.
Definition below is the standard notion of a strong mixing coeffi cient of spatial process a generic
random field {Wi,n}i∈Bn in JP (2009).

Definition B.1 (Spatial mixing coeffi cients) For given sub-sampling regions U ⊆ Bn and
V ⊆ Bn, let σn(U) = σ({Wi,n}i∈U ) be the smallest σ-field generated by {Wi,n}i∈U , and define

1Adress: 365 Fairfield Way U-1063, Storrs, CT 06269-1063, Email: jungbin.hwang@uconn.edu.
2Note that fi,n(θ) with i ∈ Gg,n is equivalent to fgi (θ), which is used in the main body of our paper.
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σn(V ) similarly using V. Then, the α- and φ- mixing coeffi cients between σn(U) and σn(V ) are
defined as

αn(U, V ) = sup
A∈σn(U), B∈σn(V )

{P (A ∩B)− P (A)P (B)} ; (B.1)

φn(U, V ) = sup
A∈σn(U), B∈σn(V ),P (B)>0

{P (A|B)− P (A)} . (B.2)

Also, the generalized α- and φ- mixing coeffi cients, with k, l, d ∈ N, for a spatial random filed
{Wi,n}i∈Bn is defined as

αk,l(d) = sup
n∈N

sup
U,V⊆Bn

{αn(U, V ); |U | ≤ k, |V | ≤ l, dist(U, V ) ≥ d} ; (B.3)

φk,l(d) = sup
n∈N

sup
U,V⊆Bn

{φn(U, V ); |U | ≤ k, |V | ≤ l, dist(U, V ) ≥ d} . (B.4)

Given k and l, the α- and φ- mixing conditions requires αk,l(d) and φk,l(d) to decays zero as
d→∞, respectively.

B.1.1 Primitive conditions for ULLN of Jacobian Process

We begin by imposing the following set of mixing conditions.

Assumption B.1 (α- and φ- mixing) The observations on Bn, {Yi,n}i∈Bn , satisfy the follow-
ing α- and φ- mixing coeffi cients

i)
∑∞

d=1 d
ν−1α1,1(d) <∞.

ii)
∑∞

d=1 d
ν−1φ1,1(d) <∞.

The mixing condition in Assumption B.1 allows for general form of weak dependence, to-
gether with heteroskedasticity and non-stationarity, among the cross-sectional units Yi,n. See, for
example, Bolthausen (1982) and JP (2011). Since the mixing conditions are characterized by
the entire sampling region Bn, Assumption B.1 allows the dependency across any different sub-
sampling regions, clusters. The mixing conditions are also provided in BCH (2011) to give the
spatial LLN and CLT, but only the α-mixing condition is discussed. Given our m-dimensional
moment process f(Yi,n, θ) on Θ ⊆ Rd, let q(j)(Yi,n, θ) be dm× 1 vector valued stochastic function
vec(∂f(Yi,n, θ)/θ

′). In addition to Assumption B.1, we further impose the following conditions on
{q(j)(Yi,n, θ)}i∈Bn .

Assumption B.2 For each j = 1, . . . , dm, the following conditions hold:
i) supn∈N supi∈Bn E[d1+δ

(j),i,n] <∞ for some δ > 0, where d(j),i,n := supθ∈Θ |q(j)(Yi,n, θ)|.
ii) For all θ, θ′ ∈ Θ, the stochastic function q(j)(Yi,n, θ) satisfies

|q(j)(Yi,n, θ)− q(j)(Yi,n, θ
′)| ≤ Ri,n · h(θ, θ′) almost surely,

where h(θ, θ′) is a non-random function such that h(θ, θ′) → 0 as θ → θ′, and {Ri,n}i∈Bnare
random variables which do not depend on θ such that

lim sup
n→∞

1

n

∑
i∈Bn

E[Rpi,n] <∞ for some p > 0.
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Recalling that f(Yi,n, θ) is Borel-measurable and continuously differentiable function at each
θ ∈ Θ, for each j, it is easy to check that {q(j)(·, θ) : i ∈ Bn, n ∈ N} is also a well defined families
of Borel measurable functions for a given θ ∈ Θ. Since the α-mixing and φ-mixing coeffi cient
conditions in Assumption B.1 are preserved under any measurable transformation, the random
field {q(j)(Yi,n, θ)}i∈Bn also satisfies Assumption B.1 at each θ ∈ Θ. Assumption B.2-i) implies
the uniform L1+δ-boundedness condition of q(j)(Yi,n, θ). In the context of linear IV regression
model with fi,n(θ0) = Zi,n(yi,n − x′i,nθ0), Assumption B.2-i) is guaranteed once we assume that
for some r > 1

sup
n∈N

sup
i∈Bn

E[Z2r
(s),i,n] <∞ holds with s = 1, . . . ,m; (B.5)

sup
n∈N

sup
i∈Bn

E[x2r
(s),i,n] <∞ holds with s = 1, . . . , d. (B.6)

Assumption B.2-ii) imposes the smoothness condition on the moment process. It is trivially
satisfied in the linear moment condition.

Proposition B.2 Under Assumption B.1-i) or Assumption B.1-ii), and Assumption B.2,

sup
θ∈Θ

∥∥∥∥∥∥ 1

Lg

∑
i∈Gg,n

∂fi(θ)

∂θ′
− Γg(θ)

∥∥∥∥∥∥ p→ 0

holds as n→∞ holding G fixed, for each g = 1, . . . , G.

The proof of proposition is given in Subsection B.1.3.

B.1.2 Primitive conditions for CLT for Group Means

In this subsection, we provide a joint CLT for the following G-array of (scaled) group means 1√
L1

∑
i∈G1,n

fi,n(θ0)′, . . . ,
1√
LG

∑
i∈GG,n

fi,n(θ0)′

′ ∈ RGm, (B.7)

which is established under asymptotically unbalanced cluster sizes. The joint CLT focuses on the
α- and the φ- mixing conditions introduced in the previous section. We impose the following set
of mixing and moment conditions.

Assumption B.3 (α-mixing) The observations on Bn, {Yi,n}i∈Bn , satisfy the following α-mixing
coeffi cients for some δ > 0.

i)
∑∞

d=1 d
ν−1[α1,1(d)]

δ
2+δ <∞.

ii)
∑∞

d=1 d
ν−1αk,l(d) <∞ for k + l ≤ 4.

iii) α1,∞(d) = O(d−ν−δ).

Assumption B.4 (φ-mixing) The observations on Bn, {Yi,n}i∈Bn , satisfy the following φ- mix-
ing coeffi cients

i)
∑∞

d=1 d
ν−1[φ1,1(d)]1/2 <∞.

ii)
∑∞

d=1 d
ν−1φk,l(d) <∞ for k + l ≤ 4.

iii) φ1,∞(d) = O(d−ν−δ) for some δ > 0.
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Assumption B.5 supn∈N supi∈Bn E[||fi,n(θ0)||2+δ] <∞ for some δ > 0.

Assumptions B.3 and B.4 are mixing conditions for the spatial random field {Yi,n}i∈Bn . It
is important to point out again that the conditions allow the weak dependence to be presented
among different clusters as well as within-cluster. Assumption B.5 is a moment restriction that
guarantees the uniform L2-integrability condition for {fi,n(θ0)}i∈Bn . In the linear IV model, the
condition holds if (B.5) and

sup
n∈N

sup
i∈Bn

E[u2r
i,n] <∞ holds with ui,n = yi,n − x′i,nθ0

hold for some r > 2. Our Assumptions B.3-B.5 are necessary for establishing CLT of the spatial
random field {fi,n(θ0)}i∈Bn , see, e.g., Dedecker (1998) and JP (2009).

Assuming that the size of each cluster Lg grows to infinity but the number of cluster G is
fixed, BCH (2011) develops a CLT for a linear regression model. Following BCH (2011), we use
the notation ∂Gg,n to refer to the boundary of region Gg and define it as

∂Gg,n = {i ∈ Gg,n; There exists j 6= Gh,n such that dist(i, j) = d0 and g 6= h}.

Assumption B.6 i) Groups are mutually exclusive and exhaustive. ii) Groups are contiguous
in the metric distance function dist(·, ·). iii) For all g = 1, . . . , G, |∂Gg,n| < CL̄

ν−1
ν where L̄ =

G−1
∑G

g=1 Lg.

Assumption B.7 For all g = 1, ..., G,

lim
Lg→∞

var

 1√
Lg

∑
i∈Gg,n

fi,n(θ0)

 = Ωg > 0.

Assumption B.6 is about geographical restrictions on clustered sampling regions {G1, . . . ,GG}.
Assumption B.7 guarantees that each group has asymptotically non-negligible variations in the
limits. Parts i)—iii) in Assumption B.6 is similar to conditions i)—iv) in Assumption 2 of BCH
(2011), but our condition iii) substantially relaxes the conditions iii)-iv) in BCH (2011) because
it does not require the equivalent cluster sizes, L1 = L2 = . . . = LG = L̄. In fact, what we
need to establish the joint CLT for the random array in (B.7) is each cluster size growing at the
same rate. The corresponding cluster sizes are allowed to be unbalanced, even asymptotically.
The following proposition formally provides the joint asymptotic normality and independence of
cluster means.

Proposition B.3 Under Assumption B.3 or Assumption B.4, and Assumptions B.6 —B.7,and
n→∞ such that G fixed with Lg/n→ λg > 0, we have

1√
L1

∑
i∈G1,n fi,n(θ0)
...

1√
LG

∑
i∈GG,n fi,n(θ0)

 d→ N

0,

 Ω1 0
. . .

0 ΩG


 . (B.8)

The proof of proposition is given in Subsection B.1.3. It proceeds by showing that the G-
random array in (B.7) after rescaling converges to multivariate normal distribution, and the
corresponding variance covariance matrix is block diagonal in the limit. Our proof of proposition
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extensively follows from those in BCH (2010), but the difference is that we allow for asymptotically
unbalanced cluster sizes. Also, we explicitly investigate the joint asymptotic normality of the G-
random array in (B.7). This makes our proof more straightforward than those of BCH (2011) who
explain the joint convergence only through the marginal convergences of each single summation
in (B.7).

For gn(θ) = n−1
∑

i∈Bn fi,n(θ), then the total sum of moment process can be decomposed into
the following form of cluster sums

√
ngn(θ0) =

G∑
g=1

√
Lg
n

1√
Lg

∑
i∈Gg,n

fi,n(θ0).

Then, the result in Proposition B.3 together with continuous mapping theorem implies the fol-
lowing “fixed”cluster Central Limit Theorem (CLT):

√
ngn(θ0)

d→
G∑
g=1

λgΛgBm,g
d
= N(0,Ω), (B.9)

where Ω =
∑G

g=1 λgΩg.

B.1.3 Proof of Propositions B.2 and B.3

Proof of Proposition B.2. Let Γ
(j)
g (θ) be the j-th element in vec(Γg(θ)). It then suffi ces to

show that the following ULLN holds for each j = 1, . . . , dm,

sup
θ∈Θ

∣∣∣∣∣∣ 1

Lg

∑
i∈Gg,n

q(j)(Yi,n, θ)− Γ(j)
g (θ)

∣∣∣∣∣∣ p→ 0. (B.10)

We prove (B.10) using Theorem 2-(a) in JP (2009). Setting the non-random constants ci,n = 1
in JP (2009), we check that (B.10) holds if we show

lim
M→∞

lim sup
Lg→∞

 1

Lg

∑
i∈Gg,n

E[dp(j),i,n1(d(j),i,n > M)]

 = 0 for some p ≥ 1 (Domination); (B.11)

∣∣∣∣∣∣ 1

Lg

∑
i∈Gg,n

q(j)(Yi,n, θ)− Γ(j)
g (θ)

∣∣∣∣∣∣ p→ 0 for each θ ∈ Θ (Pointwise LLN); (B.12)

and the spatial random process {q(j)(Yi,n, θ) : i ∈ Gg,n, n ∈ N} satisfy

lim sup
n

1

Lg

∑
i∈Gg,n

P

(
sup
θ′∈Θ

sup
θ∈B(θ′,δ)

∣∣q(j)(Yi,n, θ) − q(j)(Yi,n, θ
′) > ε

)
→ 0, as δ → 0. (B.13)

(L0 stochastically equicontinuity on Θ)

We begin by showing the domination condition in (B.11). It is not diffi cult to check that (B.11)
is implied by

lim
M→∞

sup
n∈N

sup
i∈Gg,n

E
[
dp(j),i,n1(d(j),i,n > M)

]
= 0 for some p ≥ 1. (B.14)
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Using Assumption B.2-i), we can choose p = 1 such that

sup
n∈N

sup
i∈Gg,n

E
[
d(j),i,n1(d(j),i,n > M)

]
≤ sup

n∈N
sup
i∈Gg,n

E
[
M−δd1+δ

(j),i,n1(d(j),i,n > M)
]

≤ sup
n∈N

sup
i∈Bn

E
[
d1+δ

(j),i,n

]
·M−δ → 0 as M →∞,

which gives us the desired result in (B.11).
To show the pointwise LLN in (B.12), we note that the generalized α- and φ- mixing co-

effi cients for the sub-sampling region {Yi,n}i∈Gg,n can be easily specified by the definitions in
(B.1)—(B.3), and check that the mixing conditions in Assumption B.1 are also satisfied for each
g-th cluster {Yi,n}i∈Gg,n . Moreover, the mixing conditions in Assumption B.1 for {Yi,n}i∈Gg,n are
preserved in its measurable transformation {q(j)(Yi, θ)}i∈Gg,n , which indicates that the condition
(a) or (b) in Theorem 3 in JP (2009) holds. Also, it is easy to check that our Assumption B.2-i)
directly satisfies the Assumption 2∗ in JP (2009), both of which state the pointwise uniform L1

integrability of q(j)(Yi,n, θ). Therefore, we can apply Theorem 3 in JP (2009) and obtain the
pointwise LLN in (B.12).

Lastly, Proposition 1 in JP (2009) directly gives that our Assumption B.2-ii) implies the L0

stochastically equicontinuity condition in (B.13).

Proof of Proposition B.3. We want to show that the following joint CLT
1√
n

∑
i∈G1,n fi,n(θ0)
...

1√
n

∑
i∈GG,n fi,n(θ0)

 d→ N

0,

 λ1Ω1 0
. . .

0 λGΩG


 , (B.15)

which, together with Lg/n → λg > 0, implies the joint CLT result in (B.8). For any non-zero
t = (t′1, . . . , t

′
G) ∈ RGm with tg ∈ Rm for g = 1, . . . , G, define

t′Sn(θ0) =
∑
i∈G1,n

t′1fi,n(θ0) + ...+
∑
i∈GG,n

t′Gfi,n(θ0);

σ2
n,t = var(t′Sn(θ0)).

Also, for g, h = 1, . . . , G, let

Vgh,n = E

 ∑
i∈Gg,n

fi,n(θ0)

 ∑
i∈Gh,n

fi,n(θ0)

′ .
Then, we can express

σ2
n,t

n
=

G∑
g=1

(
Lg
n

)
· t′g
(
Vgg,n
Lg

)
tg +

1

n

∑
g 6=h

t′gVgh,nth. (B.16)
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By Cramer-Wold device and Slutsky’s theorem, (B.15) is implied by

σ2
n,t

n
→

G∑
g=1

λg(t
′
gΩgtg) > 0; (B.17)

t′Sn(θ0)

σn,t

d→ N (0, 1) . (B.18)

Without loss of generality, we consider the case when {fi,n(θ0)}i∈Bn is a scalar random field. The
vector case can be dealt with making an arbitrary linear combination of fi,n(θ0) and repeating
the Cramer-Wold device.

We first prove (B.17) for α-mixing random field. In view of (B.16), Assumption B.7 and
Lg/n→ λg > 0, (B.17) holds if

1

n
|Vgh,n| ≤

1

n

∑
i∈Gg,n

∑
j∈Gh,n

|Efi,n(θ0)fj,n(θ0)| → 0 (B.19)

for any g 6= h. Define the set of d-th order neighbors located on two different clusters g 6= h,

Ng,h(d) = {(i, j) ∈ Bn ×Bn : dist(i, j) = d, i ∈ Gg,n and j ∈ Gh,n}.

Under Assumption B.5, we can use a standard α-mixing inequality, e.g. Lemma 1 in Bolthausen
(1982), and obtain

|Efi,n(θ0)fj,n(θ0)| ≤ ∆ · [α1,1(d)]
δ

2+δ (B.20)

for any (i, j) ∈ Ng,h(d), where ∆ is a positive constant. Also, using the same arguments as
the proof of Lemma 1 in BCH (2011, p.149), we can check that the geographic restrictions in
Assumption B.6 imply that

|Ng,h(d)| ≤ Cν · L̄
ν−1
ν · d (B.21)

for some Cv which only depends on the dimension of the index set ν. That is, the maximum
number of pairs in d-th order neighbor set is bounded by Cν · L̄

ν−1
ν · d. Combining the results in

(B.20) and (B.21), we obtain ∑
i∈Gg,n

∑
j∈Gh,n

|Efi,n(θ0)fj,n(θ0)′|

=

∞∑
d=1,(i,j)∈Ng,h(d)

|Efi,n(θ0)fj,n(θ0)′|

≤ O
(
L̄
ν−1
ν

)
·
∞∑
d=1

d[α1,1(d)]
δ

2+δ ,

Together with Assumption B.3-i), the above inequality leads to

1

n

∑
i∈Gg,n

∑
j∈Gh,n

E|fi,n(θ0)fj,n(θ0)|

≤ 1

G
O

(
1

L̄ν

)
·
∞∑
d=1

d[α1,1(d)]
δ

2+δ = o(1),
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which is the desired result in (B.19). The proof in the case of φ-mixing random field follows
immediately using the same arguments as above, but replacing (B.20) by the following φ-mixing
inequality, e.g., Hall and Heyde (1980, p. 277)

|Efi,n(θ0)fj,n(θ0)| ≤ ∆ · [φ1,1(d)]1/2.

Next, we prove the result in (B.18). It is straightforward to check that ∪Gg=1{λgtgf
g
i,n(θ0) :

i ∈ Gg,n} is a measurable transformation of the original process {f(Yi,n, θ0), i ∈ Bn}, so it also
satisfies the α-mixing [φ-mixing] conditions in Assumption B.3 [Assumption B.4]. Then, the
(joint) CLT for the α-mixing fields ∪Gg=1{λgtgf

g
i,n(θ0) : i ∈ Gg,n} follows from Corollary 1 in JP

(2009) by setting their non-random constants ci,n = 1, if the conditions below are satisfied for
some δ > 0 :

lim
M→∞

sup
n

sup
i∈Bn

E[|fi,n(θ0)|2+δ1(|fi,n(θ0)| > M)] = 0; (B.22)

lim inf
n→∞

σ2
n,t

n
> 0; (B.23)

∞∑
d=1

α1,1(d)d
ν(2+δ)
δ
−1 <∞ . (B.24)

It is not diffi cult to check that (B.22) is implied by our Assumption B.5. Also, (B.23) is proved by
(B.17). To show that our Assumption B.3-i) implies (B.24), note that the ratio of two summands
in Assumption B.3-i) and (B.24) is equal to

α1,1(d)d
ν(2+δ)
δ
−1

dν−1α1,1(d)
δ

2+δ

=
(
dνα1,1(d)

δ
2+δ

) 2
δ
. (B.25)

If Assumption B.3-i) holds, we check that

dνα1,1(d)
δ

2+δ → 0,

so the ratio in (B.25) converges to zero as well. Thus, given ε > 0, our Assumption B.3-i) implies
that there exists m ∈ N such that

∞∑
d=m

α1,1(d)d[ν(2+δ)/δ]−1 < ε ·
∞∑
d=m

dν−1α1,1(d)δ/(2+δ) <∞,

which leads to the desired result in (B.24). For the φ-mixing case, we check that our Assumption
B.4 and Assumption B.5 directly satisfy the Assumptions 4 and 2 for Theorem 1 in JP (2009),
respectively, which leads to the (joint) CLT for the φ-mixing random field ∪Gg=1{λgtgf

g
i,n(θ0) : i ∈

Gg,n}. This completes the proof of (B.18).
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B.2 Proof of Proposition 8

Proof. Let UΣV ′ be a singular value decomposition (SVD) of ΓΛ. By construction, U ′U =
UU ′ = Im, V ′V = V ′V = Id, and

Σ =

[
Ad×d
Oq×d

]
,

where A is a diagonal matrix. Then,

R
[
Γ′ΛS̄−1ΓΛ

]−1
Γ′ΛS̄−1B̄m = R

[
V Σ′U ′S̄−1UΣV ′

]−1
V Σ′U ′S̄−1B̄m

= RV
[
Σ′(U ′S̄−1U)ΣV ′

]−1
Σ′
[
U ′S̄−1U

]
(U ′B̄m)

d
= RV

[
Σ′S̄−1Σ

]−1
Σ′S̄−1B̄m,

where the distributional equivalence holds by a rotation invariance property of [B̄m, S̄−1]. Denot-
ing

[S̄−1]m×m =

 S̄dd
d×d

S̄dq
d×q

S̄qd
q×q

S̄qq
q×d

 ,

we have

RV
[
Σ′S̄−1Σ

]−1
Σ′S̄−1B̄m = RV A−1

(
S̄dd
)−1 (

A′
)−1

A′
(
S̄dd, S̄dq

)
B̄m

= RV A−1
[
Id

(
S̄dd
)−1 S̄dq

]
B̄m

= RV A−1
[
B̄d − S̄dqS̄−1

qq B̄q
]
.

where the last equation follows by the partitioned inverse formula that S̄dq = −S̄ddS̄dqS̄−1
qq . Simi-

larly, we obtain

R
[
Γ′ΛS̄−1ΓΛ

]−1
R′

d
= RV

[
Σ′S̄−1Σ

]−1
V ′R′

= RV A−1
(
S̄dd
)−1

(A′)−1V ′R′

= RV A−1S̄dd·q(A′)−1V ′R′,

where S̄dd·q = S̄dd − S̄dqS̄−1
qq S̄qd. Therefore,

FΩ̂c(θ̂1)(θ̂
c

2)
d→ F2∞

d
=
G

p
·
[
RV A−1

(
B̄d − S̄dqS̄−1

qq B̄q
)]′

(B.26)

×
(
RV A−1S̄dd·q(A′)−1V ′R′

)−1 [
RV A−1

(
B̄d − S̄dqS̄−1

qq B̄q
)]
.

Let Ũp×pΣ̃Ṽ ′d×d be a SVD of RV A
−1, where Σ̃ = (Ãp×p, Op×(d−p)). By definition, Ṽ is the matrix

of eigenvectors of (RV A−1)′(RV A−1). Then,

F2∞
d
=
G

p

[
B̄d − S̄dqS̄−1

qq B̄q
]′
Ṽ Σ̃′Ũ ′

[
Ũ Σ̃Ṽ ′S̄dd·qṼ Σ̃′Ũ ′

]−1
Ũ Σ̃Ṽ ′

[
B̄d − S̄dqS̄−1

qq B̄q
]

=
G

p

[
B̄d − S̄dqS̄−1

qq B̄q
]′
Ṽ Σ̃′ ·

[
Σ̃Ṽ ′S̄dd·qṼ Σ̃′

]−1
· Σ̃Ṽ ′

[
B̄d − S̄dqS̄−1

qq B̄q
]

=
G

p

[
Ṽ ′B̄d − Ṽ ′S̄dqS̄−1

qq B̄q

]′
Σ̃′ ·

[
Σ̃Ṽ ′S̄dd·qṼ Σ̃′

]−1
· Σ̃
[
Ṽ ′B̄d − Ṽ ′S̄dqS̄−1

qq B̄q

]
.
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Note that the rotational invariance property of the standard normal vector implies[
Ṽ ′B̄d, Ṽ

′S̄dq, S̄−1
qq , Ṽ

′S̄dd·qṼ
]
d
=
[
B̄d, S̄dq, S̄−1

qq , S̄dd·q
]
,

which leads us to obtain

F2∞
d
=
G

p

[
B̄d − S̄dqS̄−1

qq B̄q
]′

Σ̃′ ·
[
Σ̃S̄dd·qΣ̃′

]−1
· Σ̃
[
B̄d − S̄dqS̄−1

qq B̄q
]

=
G

p
·
[
B̄p − S̄pqS̄−1

qq B̄q
]′
Ã′
{
Ã
(
S̄pp·q

)
Ã′
}−1

Ã
[
B̄p − S̄pqS̄−1

qq B̄q
]

=
G

p
·
(
B̄p − S̄pqS̄−1

qq B̄q
)′ S̄−1

pp·q
(
B̄p − S̄pqS̄−1

qq B̄q
)′
,

as desired. The proof of part (b) is similar, so we omit the details. To prove part (c), we use the
same arguments and obtain

J(θ̂
c

2)
d→ J∞ := G ·

{
U ′B̄m − U ′ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}′
× U ′S̄−1U (B.27)

×
{
U ′B̄m − U ′ΓΛ

(
Γ′ΛS̄−1ΓΛ

)−1
Γ′ΛS̄−1B̄m

}
d
= G

{
B̄m − U ′ΓΛV A

−1
[
B̄d − S̄dqS̄−1

qq B̄q
]}′ S̄−1

×
{
B̄m − U ′ΓΛV A

−1
[
B̄d − S̄dqS̄−1

qq B̄q
]}
,

which is continued in

= G

{
B̄m −

[
Id×d
Oq×d

] (
B̄d − S̄dqS̄−1

qq B̄q
)}′

S̄−1

×
{
B̄m −

[
Id×d
Oq×d

] (
B̄d − S̄dqS̄−1

qq B̄q
)}

= G

(
S̄dqS̄−1

qq B̄q
B̄q

)′
S̄−1

(
S̄dqS̄−1

qq B̄q
B̄q

)
= G · B̄′qS̄−1

qq B̄q,

where the last equality follows from straightforward calculations. Lastly, it is not diffi cult to
check that the convergence results in (B.31) and (B.27) hold jointly. This completes the proof.
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B.3 Proof of Proposition 6

Proof. Let UΣV ′ be a singular value decomposition (SVD) of ΓΛ. Also, define BU
m,g = U ′Bm,g,

B̄U
m = U ′B̄m, and

D̃U∞ = U ′D̃∞U =

 D̃U11
d×d

D̃U12
d×q

D̃U21
q×d

D̃U22
q×q

 . (B.28)

Using the similar argument in the proof of Proposition 8-(a), we can show that

√
n(θ̂2 − θ0)

d→ −V A−1
√
G

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)
and Ω̂(θ̂1)

d→ ΛD̃∞Λ′,

where holds jointly. It then follows that

FΩ̂(θ̂1)(θ̂2) =
1

p
·
[
R(θ̂2 − θ0)

]′ (
Rv̂arΩ̂(θ̂1)(θ̂2)R′

)−1 [
R(θ̂2 − θ0)

]
d→ G

p
· (B̄U

d − D̃U12

[
D̃U22

]−1
B̄U
q )′A−1′V ′R′

[
R

(
Γ′
(

ΛD̃∞Λ′
)−1

Γ

)−1

R′

]−1

×RV A−1(B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q )

=
G

p
· (B̄U

d − D̃U12

[
D̃U22

]−1
B̄U
q )′A−1′V ′R′ ·

{
R

[
Γ′
(
Λ′
)−1

U
(
U ′D̃∞U

)−1
U ′Λ−1Γ

]−1

R′

}−1

×RV A−1(B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
d )

=
G

p
· (B̄U

d − D̃U12

[
D̃U22

]−1
B̄U
q )′A−1′V ′R′

{
RV A−1D̃U11·2A

−1′V ′R′
}−1

×RV A−1(B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
d ).

Let Ũp×pΣ̃Ṽ ′d×d be a SVD of RV A
−1, where Σ̃ = (Ãp×p, Op×(d−p)). Also, define

V =

(
Ṽd×d O
O Iq×q

)
,

and

D̆ =

(
D̆11 D̆12

D̆21 D̆22

)
=

(
Ṽd×d O
O Iq

)′( D̃U11 D̃U12

D̃U21 D̃U22

)(
Ṽd×d O
O Iq

)
= V′D̃U∞V.

Then,

D̆ =
1

G

G∑
g=1

V′U ′(Bm,g − B̄m)(Bm,g − B̄m)′VU +

(
Ṽ ′βW̃
Iq

)
B̄U
q (B̄U

q )′
(
Ṽ ′βW̃
Iq

)′
d
=

1

G

G∑
g=1

(Bm,g − B̄m)(Bm,g − B̄m)′ +

(
Ṽ ′βW̃
Iq

)
B̄qB̄

′
q

(
Ṽ ′βW̃
Iq

)′
,
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which implies that

D̆11 :=

(
D̆pp D̆p,d−p
D̆d−p,p D̆d−p,d−p

)
d
=

1

G

G∑
g=1

(Bd,g−B̄d)(Bd,g−B̄d)′+
(
Ṽ ′βW̃

)
B̄qB̄

′
q

(
Ṽ ′βW̃

)′
, (B.29)

and

D̆12 :=

(
D̆pq
D̆d−p,q

)
d
=

1

G

G∑
g=1

(Bd,g − B̄d)(Bq,g − B̄q)′ +
(
Ṽ ′βW̃

)
B̄qB̄

′
q. (B.30)

Now

FΩ̂(θ̂1)(θ̂2)
d→ G

p
· (B̄U

d − D̆12D̆−1
22 B̄

U
q )′Ṽ Σ̃′Ũ ′

{
Ũ Σ̃Ṽ ′D̆11·2Ṽ Σ̃′Ũ ′

}−1
Ũ Σ̃Ṽ ′(B̄U

d − D̆12D̆−1
22 B̄

U
q )

=
G

p
· (B̄U

d − D̆12D̆−1
22 B̄

U
q )′Ṽ Σ̃′ ·

{
Σ̃Ṽ ′D̆11·2Ṽ Σ̃′

}−1
· Σ̃Ṽ ′(B̄U

d − D̆12D̆−1
22 B̄

U
q )

d
=
G

p
·
[
B̄p − D̆pqD̆−1

qq B̄q

]′
Ã′
{
Ã
(
D̆pp − D̆pqD̆−1

qq D̆qp
)
Ã′
}−1

Ã
[
B̄p − D̆pqD̆−1

qq B̄q

]
d
=
G

p
·
[
B̄p − D̆pqD̆−1

qq B̄q

]′ (
D̆pp − D̆pqD̆−1

qq D̆qp
)−1 [

B̄p − D̆pqD̆−1
qq B̄q

]
, (B.31)

where D̆pq, D̆qq, and D̆qp in the last two equalities are understood to equal the corresponding
components on the right hand sides of (B.29) and (B.30). Here we have abused the notation a
little bit. We have (

D̆pp D̆pq
D̆′pq D̆qq

)
d
= Ep+q,p+q =

(
S̄pp S̄pq
S̄′pq S̄qq

)
+ w̃B̄qB̄

′
qw̃
′ (B.32)

for

w̃ =

(
β̃
p

W̃
Iq

)
∈ R(p+q)×q.

Direct calculations show that the representation in (B.31) is numerically identical to

1

p
·
[
G

(
B̄p
B̄q

)′( Epp Epq
E′pq Eqq

)−1(
B̄p
B̄q

)
−G · B̄′qS−1

qq B̄q

]
,

which completes the proof of part (a). To prove part (b), we repeat the same argument in the
proof of Proposition 8-(b) and obtain that

√
ngn(θ̂2) =

1√
G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ̂2)

+ op(1)

d→ Λ
√
G

(
UU ′B̄m − ΓΛ

[
Γ′ΛD̃−1

∞ ΓΛ

]−1
Γ′ΛD̃−1

∞ B̄m

)
d
= Λ
√
G

[
UB̄U

m − ΓΛV A
−1

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)]
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with D̃U12 and D̃U22 given in (B.28). Therefore, we have

J(θ̂2) = ngn(θ̂2)′
(

Ω̂(θ̂1)
)−1

gn(θ̂2)

d→ G

{
UB̄U

m − ΓΛV A
−1

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}′
× Λ′

(
ΛD̃∞Λ′

)−1
Λ

×
{
UB̄U

m − ΓΛV A
−1

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}
= G

{
B̄U
m − U ′ΓΛV A

−1

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}′
U ′D̃−1

∞ U

×
{
B̄U
m − U ′ΓΛV A

−1

(
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}
,

which is continued in

= G

{
B̄U
m −

[
Id×d
Oq×d

](
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}′ [
D̃U∞
]−1

×
{
B̄U
m −

[
Id×d
Oq×d

](
B̄U
d − D̃U12

[
D̃U22

]−1
B̄U
q

)}

= G

(
D̃U12

[
D̃U22

]−1
B̄U
q

B̄U
q

)′ [
D̃U∞
]−1

(
D̃U12

[
D̃U22

]−1
B̄U
q

B̄U
q

)

= G(B̄U
q )′
[
D̃U22

]−1
B̄U
q

d
= G · B̄′qS−1

22 B̄q

where the second last equality follows from straightforward calculations. The joint convergence
can be proved easily.
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B.4 Asymptotics for LM and QLR statistics

In this subsection, we construct the Quasi-Likelihood Ratio (QLR) and the Lagrangian Multiplier
(LM) statistics in the GMM setting and investigate their fixed-G limits. Define the restricted
and centered two-step estimator θ̂

c,r

2

θ̂
c,r

2 := arg min
θ∈Θ

gn(θ)′
[
Ω̂c(θ̂1)

]−1
gn(θ) such that Rθ = r.

The QLR statistic is then given by

LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) :=
n

p

{
gn(θ̂

c,r

2 )′
[
Ω̂c(θ̂1)

]−1
gn(θ̂

c,r

2 )− gn(θ̂
c

2)′
[
Ω̂c(θ̂1)

]−1
gn(θ̂

c

2)

}
.

To define LM or score statistic in the GMM setting, let SΩ̂c(·)(θ) be the gradient of the GMM

criterion function Γ̂(θ)′[Ω̂c(·)]−1gn(θ), then the GMM score test statistic is given by

LMΩ̂c(θ̂1)(θ̂
c,r

2 ) :=
n

p

[
SΩ̂c(θ̂1)(θ̂

c,r

2 )
]′{

Γ̂(θ̂
c,r

2 )′
[
Ω̂c(θ̂1)

]−1
Γ̂(θ̂

c,r

2 )

}−1 [
SΩ̂c(θ̂1)(θ̂

c,r

2 )
]
.

In the definition of all three types of the GMM test statistics, we plug the first-step estimator θ̂1

into Ω̂c(·), but Lemma 7 indicates that replacing θ̂1 with any
√
n-consistent estimator (e.g., θ̂2 and

θ̂
c

2) does not affect the fixed-G asymptotic results. This contrasts with the fixed-G asymptotics for
the uncentered two-step estimator θ̂2. Lastly, using the same multiplicative factors as in Section
4 in the main text, we can also construct the modified QLR and LM statistics.

Proposition B.4 Let Assumptions 1∼5 hold. Then„
(a) LRΩ̂c(θ̂1)(θ̂

c

2, θ̂
c,r

2 ) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1);

(b) LMΩ̂c(θ̂1)(θ̂
c,r

2 ) = FΩ̂c(θ̂1)(θ̂
c

2) + op(1).

(c) The modified QLR and LM statistics all converge in distribution to Fp,G−p−q.

Proposition B.4 shows that QLR and LM types of test statistics are asymptotically equivalent
to the Wald statistics FΩ̂c(θ̂1)(θ̂

c

2). This also implies that all three types of test statistics share
the same fixed-G limit as given in the main text. Similar results are obtained by Sun (2014) and
Hwang and Sun (2017a), which focus on the two-step GMM estimation and HAR inference in a
time series setting.

B.4.1 Proof of Proposition B.4

Proof. To prove (a), it suffi ces to show the asymptotic equivalence between LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 )

and FΩ̂c(θ̂1)(θ̂
c

2) holds under the fixed-G asymptotics. Recall that the restricted two-step GMM

estimator θ̂
c,r

2 minimizes

gn(θ)′
[
Ω̂c(θ̂1)

]−1
gn(θ)/2 + λ′n(Rθ − r).

The first order conditions are

Γ̂′(θ̂
c,r

2 )
[
Ω̂c(θ̂1)

]−1
gn(θ̂

c,r

2 ) +R′λn = 0 and Rθ̂
c,r

2 = r.
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Using a Taylor expansion and Assumption 3, we can combine two FOC’s to get

√
n(θ̂

c,r

2 − θ0) = −Φ−1Γ′
[
Ω̂c(θ̂1)

]−1√
ngn(θ0) (B.33)

− Φ−1R′
(
RΦ−1R′

)−1
RΦ−1Γ′

[
Ω̂c
n(θ̂1)

]−1√
ngn(θ0) + op(1)

and √
nλn = −(RΦ−1R′)−1RΦ−1Γ′

[
Ω̂c
n(θ̂1)

]−1√
ngn(θ0) + op(1), (B.34)

where Φ := Γ′
[
Ω̂c(θ̂1)

]−1
Γ. Subtracting (B.33) from (13), we have

√
n(θ̂

c,r

2 − θ̂
c

2) = −Φ−1R′
(
RΦ−1R′

)−1
RΦ−1Γ′

[
Ω̂c(θ̂1)

]−1√
ngn(θ0) + op(1) (B.35)

= Op(1), (B.36)

where the equation (B.36) comes from Lemma 7-(b) and Assumption 1-ii). Thus, we can approx-
imate gn(θ̂

c,r

2 ) around θ̂
c

2 as

g′n(θ̂
c,r

2 ) = g′n(θ̂
c

2)− (θ̂
c,r

2 − θ̂
c

2)′Γ̂′(θ̂
c

2) + op(n
−1/2).

Plugging this into the definition of LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ),

LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) =
n

p

{
(θ̂
c,r

2 − θ̂
c

2)′Γ̂′(θ̂
c

2)
[
Ω̂c(θ̂1)

]−1
Γ̂(θ̂

c

2)(θ̂
c,r

2 − θ̂
c

2) (B.37)

−2g′n(θ̂
c

2)
[
Ω̂c(θ̂1)

]−1
Γ̂(θ̂

c

2)(θ̂
c,r

2 − θ̂
c

2)

}
+ op(1),

where the last term in (B.37) is always zero from the FOC of θ̂
c

2. Combining (B.35) and (B.37),
we have

LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) =
n

p
(θ̂
c,r

2 − θ̂
c

2)′Γ̂′(θ̂
c

2)
[
Ω̂c(θ̂1)

]−1
Γ̂(θ̂

c

2)(θ̂
c,r

2 − θ̂
c

2) + op(1)

=
n

p

[
Φ−1R′

(
RΦ−1R′

)−1
RΦ−1Γ′

[
Ω̂c(θ̂1)

]−1√
ngn(θ0)

]′
×

Φ

[
Φ−1R′

(
RΦ−1R′

)−1
RΦ−1Γ′

[
Ω̂c(θ̂1)

]−1√
ngn(θ0)

]
+ op(1)

=
1

p

[
RΦ−1Γ′

[
Ω̂c(θ̂1)

]−1√
ngn(θ0)

]′ (
RΦ−1R′

)−1

×
[
RΦ−1Γ′

[
Ω̂c(θ̂1)

]−1√
ngn(θ0)

]
+ op(1)

= FΩ̂c(θ̂1)(θ̂
c

2) + op(1),

as desired. To prove part (b), we show LMΩ̂c(θ̂1)(θ̂
c,r

2 ) = LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) + op(1). From the first

order condition of θ̂
c,r

2 and the equation (B.34), we expand the score vector by

√
nSΩ̂c(θ̂1)(θ̂

c,r

2 ) = Γ̂(θ̂
c,r

2 )′
[
Ω̂c(θ̂1)

]−1√
ngn(θ̂

c,r

2 ) = −R′
√
nλn

= R′(RΦ−1R′)−1RΦ−1Γ′
[
Ω̂c
n(θ̂1)

]−1√
ngn(θ0) + op(1)

= −Φ
√
n(θ̂

c,r

2 − θ̂
c

2) + op(1),
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and so

LMΩ̂c(θ̂1)(θ̂
c,r

2 ) = n(θ̂
c,r

2 − θ̂
c

2)′Φ(θ̂
c,r

2 − θ̂
c

2)/p+ op(1)

= LRΩ̂c(θ̂1)(θ̂
c

2, θ̂
c,r

2 ) + op(1)

= FΩ̂c(θ̂1)(θ̂
c

2) + op(1),

which leads the desired result. The proof of (c) directly follows from the results in (a), (b), and
Proposition 8.
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B.5 Asymptotically unbalanced sizes in clusters

In this subsection, we present the fixed-G limits of the centered CCE and corresponding test
statistics assuming the asymptotically unbalanced cluster sizes. We assume that the cluster size
Lg →∞ as n→∞ such that

Lg
n
→ λg > 0 for each g = 1, . . . , G. (B.38)

By construction,
∑G

g=1 λg = 1 for all possible λg ∈ (0, 1). Also, Assumption 1-ii) guarantees that
the total (scaled) sum of moment process satisfies

√
ngn(θ0) =

G∑
g=1

√
Lg
n

1√
Lg

Lg∑
i=1

fgi (θ0)

d→
G∑
g=1

√
λgΛgBm,g ∼ N(0,Ω),

where Ω =
∑
λgΩg. Keeping the same notations in the main text, we define an m ×m random

matrix

M̄ := M̄(λ) =

G∑
g=1

(√
λgBm,g − λg

G∑
h=1

√
λhBm,h

)(√
λgBm,g − λg

G∑
h=1

√
λhBm,h

)′
.

Also, we denote M̄pp, M̄pq, M̄qp, and M̄qq as sub-matrices of M̄ in a similar manner in the main
text.

Proposition B.5 Let Assumptions 1—5 hold, where Assumption 1-iii) is replaced with (B.38).
Define M̄pp·q = M̄pp − M̄pqM̄−1

qq M̄qp. Then,

(a) Ω̂c(θ̃)
d→ ΛM̄Λ′ for any

√
n-consistent estimator θ̃.;

(b) FΩ̂c(θ̂1)(θ̂
c

2)
d→ F̃2∞ := F̃2∞(λ), where

F̃2∞(λ)
d
=

1

p

 G∑
g=1

√
λgBp,g

− M̄pqM̄−1
qq

 G∑
g=1

√
λgBq,g

′ M̄−1
pp·q

×

 G∑
g=1

√
λgBp,g

− M̄pqM̄−1
qq

 G∑
g=1

√
λgBq,g

 .
(c) tΩ̂c(θ̂1)(θ̂

c

2)
d→ T̃2∞ := T̃2∞(λ), where

T̃2∞(λ) =

∑G
g=1

√
λgBp,g − M̄pqM̄−1

qq

∑G
g=1

√
λgBq,g√

M̄pp·q

.
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B.5.1 Proof of Proposition B.5

Proof. We only prove parts (a) and (b), as the proof of part (c) can be done similarly. To prove
(a), note that the centered CCE can be represented as:

Ω̂c(θ̃) =
G∑
g=1

 1√
n

Lg∑
i=1

(
fgi (θ̃)− 1

n

G∑
h=1

Lh∑
i=1

fhi (θ̃)

)

× 1√
n

Lg∑
i=1

(
fgi (θ̃)− 1

n

G∑
h=1

Lh∑
i=1

fhi (θ̃)

)′ .

For each g = 1, ..., G, we use the same arguments in the proof of Lemma 7 and obtain that

1√
n

Lg∑
i=1

fgi (θ̃) =
1√
n

Lg∑
i=1

{
fgi (θ0) +

∂fgi (θ̃)

∂θ′
(θ̃ − θ0)

}
(1 + op(1))

=
1√
n

Lg∑
i=1

fgi (θ0) +

(
Lg
n

)
· 1

Lg

Lg∑
i=1

∂fgi (θ0)

∂θ′
√
n(θ̃ − θ0)(1 + op(1))

=


√
Lg
n
· 1√

Lg

Lg∑
i=1

fgi (θ0) +

(
Lg
n

)
Γ
√
n(θ̃ − θ0)

 (1 + op(1))

=

√λg · 1√
Lg

Lg∑
i=1

fgi (θ0) + λgΓ
√
n(θ̃ − θ0)

 (1 + op(1)),

where the last equation follows from (B.38). Similarly,

1√
n

Lg∑
i=1

(
1

n

G∑
h=1

Lh∑
i=1

fhi (θ̃)

)
=

λg√
n

G∑
h=1

Lh∑
i=1

fhi (θ̃)(1 + op(1)

= λg

G∑
h=1

{
1√
n

Lh∑
i=1

(
fgi (θ0) +

∂fgi (θ̃)

∂θ′
(θ̃ − θ0)

)}
(1 + op(1))

= λg

G∑
h=1

{√
λh ·

1√
Lh

Lh∑
i=1

fhi (θ0) + λhΓ
√
n(θ̃ − θ0)

}
(1 + op(1))

=

{
λg

G∑
h=1

(√
λh ·

1√
Lh

Lh∑
i=1

fhi (θ0)

)
+ λgΓ

√
n(θ̃ − θ0)

}
(1 + op(1)),

where the last equation holds from
∑G

h=1 λh = 1. It then follows that

1√
n

Lg∑
i=1

fgi (θ̃)− 1

n

G∑
h=1

Lg∑
i=1

fgi (θ̃)

 =

√λg · 1√
Lg

Lg∑
i=1

fgi (θ0)

−λg
G∑
h=1

(√
λh ·

1√
Lh

Lh∑
i=1

fhi (θ0)

)}
(1 + op(1))

d→
√
λgBm,g − λg

G∑
h=1

√
λhBm,h,

18



where the convergence holds jointly for g = 1, . . . , G by Assumption 1-ii). By continuous mapping
theorem, this leads us to the desired result in (a). To prove part (b), note that the result in (a)
and (B.38) imply

√
n(θ̂

c

2 − θ0) = −
(

Γ′
[
Ω̂c(θ̂1)

]−1
Γ

)−1

Γ′
[
Ω̂c(θ̂1)

]−1√
ngn(θ0) + op(1)

d→ −
[
Γ′ΛM̄−1ΓΛ

]−1
Γ′ΛM̄−1

 G∑
g=1

√
λgBm,g

 ,

and leads us to obtain FΩ̂c(θ̂1)(θ̂
c

2)
d→ F̃2∞ where

F̃2∞ : = F̃2∞(λ) =
1

p
·

R (Γ′ΛM̄−1ΓΛ

)−1
Γ′ΛM̄−1

 G∑
g=1

√
λgBm,g

′ [R (Γ′ΛM̄−1ΓΛ

)−1
R′
]−1

×

R (Γ′ΛM̄−1ΓΛ

)−1
Γ′ΛM̄−1

 G∑
g=1

√
λgBm,g

 .
Let UΣV ′ be a singular value decomposition (SVD) of ΓΛ. Also, denote Ũ Σ̃Ṽ ′ as a SVD of
RV A−1. Then, it is check that the following rotational invariance properties hold G∑

g=1

√
λgBm,g, M̄−1

 d
=

U ′
 G∑
g=1

√
λgBm,g

 , U ′M̄−1U

 ,
and  G∑

g=1

√
λgBd,g, M̄dq, M̄−1

qq , M̄dd·q


d
=

Ṽ ′ G∑
g=1

√
λgBd,g, Ṽ

′M̄dq, M̄−1
qq , Ṽ

′M̄dd·qṼ


for U ′U = UU ′ = Im and Ṽ ′Ṽ = Ṽ Ṽ ′ = Id. Then, the rest of proof is similar to that of
Proposition 8-(a). The only differences is that the limit of CCE matrix S̄ and B̄m, and corre-
sponding subcomponents are replaced with M̄,

∑G
g=1

√
λgBm,g, and corresponding submatrices,

respectively.

19



B.6 Iterative Two-step and continuous updating Schemes

In this subsection, we consider two types of continuous updating schemes first suggested in Hansen
et al. (1996). The first is motivated by the iterative scheme that updates the FOC of two-step

GMM estimation until it converges. The FOC for θ̂
j

IE is

Γ̂(θ̂
j

IE)′Ω̂−1(θ̂
j−1

IE )gn(θ̂
j

IE) = 0 for j ≥ 1.

In view of the above FOC, θ̂
j

IE can be regarded as a generalized-estimating-equations (GEE)
estimator, which is a class of estimators first proposed by Liang and Zeger (1986) and further
studied by Jiang, Luan, and Wang (2007). When the number of iterations j goes to infinity

until θ̂
j

IE converges, we obtain the continuous updating GEE (CU-GEE) estimator θ̂CU-GEE. A
recent paper by Hansen and Lee (2019) provides a rigorous theory for the existence of the iterated
GMM estimator in Hansen et al (1996) in the context of both correctly specified and misspecified
population moment conditions. The iterated GMM estimator is obtained by iterating the GMM
object function instead of the FOC. Under correctly specified moment conditions, it is not diffi cult
to check that the CU-GEE estimator considered here is asymptotically equivalent to the iterated
GMM estimator. The FOC for θ̂CU-GEE is given by

Γ̂(θ̂CU-GEE)′Ω̂−1(θ̂CU-GEE)gn(θ̂CU-GEE) = 0. (B.39)

Define

Ω̂∗(θ̂CU-GEE) = Ω̂(θ̂CU-GEE)−

 1

n

G∑
g=1

L2
g

 · gn(θ̂CU-GEE)gn(θ̂CU-GEE)′

which is an asymptotically equivalent eversion of the centered CCE Ω̂c(θ̂CU-GEE). While we
employ the uncentered CCE, Ω̂(·) in the definition of θ̂CU-GEE, it is not diffi cult to show that

Γ̂(θ̂CU-GEE)′Ω̂−1(θ̂CU-GEE)gn(θ̂CU-GEE)

= Γ̂(θ̂CU-GEE)′
(

Ω̂∗(θ̂CU-GEE)
)−1

gn(θ̂CU-GEE) · 1

1 + ν∗n(θ̂CU-GEE)
,

where

ν∗n(θ̂CU-GEE) =

 1

n

G∑
g=1

L2
g

 · gn(θ̂CU-GEE)′
(

Ω̂∗(θ̂CU-GEE)
)−1

gn(θ̂CU-GEE).

Since 1/(1+ν∗n(θ̂CU-GEE)) is always positive, the first-order condition in (B.39) holds if and only
if

Γ̂(θ̂CU-GEE)′
[
Ω̂∗(θ̂CU-GEE)

]−1
gn(θ̂CU-GEE) = 0, (B.40)

which indicates that replacing the CCE in (B.39) by Ω̂∗(θ̂CU-GEE) has no effect on the iteration
GMM estimator.

The second CU scheme continuously updates the GMM criterion function, which leads to the
familiar continuous updating GMM (CU-GMM) estimator:

θ̂CU-GMM = arg min
θ∈Θ

gn(θ)′Ω̂−1(θ)gn(θ).
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Although we use the uncentered CEE Ω̂(θ) in the above definition, the original idea of θ̂CU-GMM
in Hansen, Heaton and Yaron (1996) is based on the centered CCE weighting matrix Ω̂c(θ). With
Mn = n−1

∑G
g=1 L

2
g, it is easy to show that

Mn · gn(θ)Ω̂−1(θ)gn(θ) = Mn · gn(θ)′Ω̂−1(θ)
[
Ω̂(θ)−Mn · gn(θ)gn(θ)′

] [
Ω̂∗(θ)

]−1
gn(θ)

= Mn · gn(θ)′
[
Ω̂∗(θ)

]−1
gn(θ)

{
1−Mn · gn(θ)′Ω̂−1(θ)gn(θ)

}
.

Thus, we have

Mn · gn(θ)′
[
Ω̂∗(θ)

]−1
gn(θ) =

Mn · gn(θ)′Ω̂−1(θ)gn(θ)

1−Mn · gn(θ)′Ω̂−1(θ)gn(θ)
.

The above equation reveals the fact that the CU-GMM estimator will not change if the uncentered
weighting matrix Ω̂(θ) is replaced by the centered one Ω̂∗(θ), that is,

θ̂CU-GMM = arg min
θ∈Θ

gn(θ)′
[
Ω̂∗(θ)

]−1
gn(θ). (B.41)

Similar to the centered two-step GMM estimator, the two CU estimators can be regarded as
having a built-in recentering mechanism via the version of CCE weight matrix Ω̂∗(θ). For this
reason, the limiting distributions of the two CU estimators are the same as that of the centered
two-step GMM estimator, as is shown below.

Proposition B.6 Let Assumptions 1, 3∼5 hold. Assume that θ̂CU-GEE and θ̂CU-GMM are
√
n-

consistent. Then

√
n(θ̂CU-GEE − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m

and √
n(θ̂CU-GMM − θ0)

d→ −
[
Γ′ (Ωc

∞)−1 Γ
]−1

Γ′ (Ωc
∞)−1 Λ

√
GB̄m.

The proof of proposition shows the asymptotic equivalence between two versions of centered
CCE weighting matrix, i.e. Ω̂∗(θ̃) = Ω̂c(θ̃) + op(1) for any

√
n-consistent θ̃. As a result, the CU

estimators and the centered two-step GMM estimator are asymptotically equivalent under the
fixed-G asymptotics. Based on the two CU estimators, we construct the Wald statistics as

FΩ̂c(θ̂CU-GEE )(θ̂θ̂CU-GEE ) =
1

p
(Rθ̂CU-GEE − r)′{Rv̂arΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)R′}−1(Rθ̂CU-GEE − r)

(B.42)
and

FΩ̂c(θ̂CU-GMM )(θ̂θ̂CU-GMM ) =
1

p
(Rθ̂CU-GMM − r)′{Rv̂arΩ̂c(θ̂CU-GMM )(θ̂CU-GMM)R′}−1(Rθ̂CU-GMM − r).

(B.43)
We construct tΩ̂c(θ̂CU-GEE )(θ̂CU-GEE) and tΩ̂c(θ̂CU-GMM )(θ̂CU-GMM) in a similar way when p = 1.

It follows from Proposition B.6 that the Wald statistics based on θ̂CU-GEE and θ̂CU-GMM are
asymptotically equivalent to FΩ̂c(θ̂‘)

(θ̂
c

2). As a result,

FΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)
d→ F2∞ and FΩ̂c(θ̂CU-GMM )(θ̂CU-GMM)

d→ F2∞.
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Similarly,

tΩ̂c(θ̂CU-GEE )(θ̂CU-GEE)
d→ T2∞ and tΩ̂c(θ̂CU-GMM (θ̂CU-GMM)

d→ T2∞.

Note that changing the centered CCE Ω̂c(·) by Ω̂∗(·) is innocuous to our fixed-G limiting distri-
butions. In summary, we have shown that all three estimators θ̂

c
2, θ̂CU-GEE and θ̂CU-GMM , and

the corresponding Wald test statistics converge in distribution to the same nonstandard distrib-
utions. Proposition 8-(c) and (d) continues to hold for the CU-GEE and CU-GMM estimators,
leading to the asymptotic equivalence of the three test statistics based on the CU-type estimators.
That is, the CU-GMM estimator shares the first order fixed-smoothing limit with the two-step
GMM estimator in our paper. Similar results have been found in a recent paper by Zhang (2016)
in a time series setting who develops the fixed-smoothing asymptotic theory for the CU-GMM
estimator.

Together with Theorem 10, Proposition B.6 imply that the modified of Wald, LR,LM, and t
statistics based on the CU estimators are all asymptotically F and t distributed under the fixed-G
asymptotics. For the finite-sample corrected variance formula, we have the following expansion

√
n(θ̂CU-GEE − θ0)

= −
(

Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

ngn(θ0) + E2n

√
n(θ̂CU-GEE − θ0) + op (1) . (B.44)

This can be regarded as a special case of (27) wherein the first-step estimator θ̂1 is replaced by
the CU-GEE estimator. Thus,

√
n(θ̂CU-GEE − θ0)

a∼ − (Id − E2n)−1

(
Γ′
(

Ω̂c(θ0)
)−1

Γ

)−1

Γ′
(

Ω̂c(θ0)
)−1√

ngn(θ0), (B.45)

We can obtain the same expression for the CU-GMM estimator
√
n(θ̂CU-GMM − θ0).

In view of the representation in (B.45), the corrected variance estimator for the CU type
estimators can be constructed as follows:

v̂arw
Ω̂c(θ̂CU-GEE )

(θ̂CU-GEE) =
(
Id − ÊCU-GEE

)−1
v̂ar

(
θ̂CU-GEE

)(
Id − Ê ′CU-GEE

)−1

v̂arw
Ω̂c(θ̂CU-GEE )

(θ̂CU-GMM) =
(
Id − ÊCU-GMM

)−1
v̂ar

(
θ̂CU-GMM

)(
Id − Ê ′CU-GMM

)−1
,

where

ÊCU-GEE[., j] =

{
Γ̂′
[
Ω̂c(θ̂CU-GEE)

]−1
Γ̂′
}−1

× Γ̂′

{[
Ω̂c(θ̂CU-GEE)

]−1 ∂Ω̂c(θ̂CU-GEE)

∂θj

[
Ω̂c(θ̂CU-GEE)

]−1
}
gn(θ̂CU-GEE)

and ÊCU-GMM is defined in the same way but with θ̂CU-GEE replaced by θ̂CU-GMM .With the finite
sample corrected and adjusted variance estimators in place, the Wald and t statistics based on the
CU estimators also converge in distribution to the same nonstandard distributions in Proposition
8 (a) and (b), respectively.
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B.6.1 Proof of Proposition B.6

Proof. For the result with CU-GEE estimator θ̂CU-GEE, we have

√
n(θ̂CU-GEE − θ0) = −

(
Γ′
[
Ω̂∗(θ̂CU-GEE)

]−1
Γ

)−1

Γ′
[
Ω̂∗(θ̂CU-GEE)

]−1√
ngn(θ0) + op(1).

We first show that
Ω̂∗(θ̃) = Ω̂c(θ̃) + op(1) (B.46)

for any
√
n-consistent estimator θ̃. Recall that

Ω̂∗(θ̃) = Ω̂(θ̃)−

 1

n

G∑
g=1

L2
g

 · gn(θ̃)gn(θ̃);

Ω̂c(θ̃) =
1

n

G∑
g=1

 Lg∑
i=1

(fgi (θ̃)− gn(θ̃)

 Lg∑
i=1

fgi (θ̃)− gn(θ̃)

′

= Ω̂(θ̃)− gn(θ̃) ·

 1

n

G∑
g=1

Lg

Lg∑
i=1

fgi (θ̃)

′

−

 1

n

G∑
g=1

Lg

Lg∑
i=1

fgi (θ̃)

′ · gn(θ̃)′ +

 1

n

G∑
g=1

L2
g

 · gn(θ̃)gn(θ̃)′.

Thus, (B.46) can be proved by showing

gn(θ̃)

 1

n

G∑
g=1

Lg

Lg∑
i=1

fgi (θ̃)

′ =
 1

n

G∑
g=1

L2
g

 · gn(θ̃)gn(θ̃)′ + op(1). (B.47)

By Assumption 1-iii) and
√
n-consistency of θ̃,

gn(θ̃)

 1

n

G∑
g=1

Lg

Lg∑
i=1

fgi (θ̃)

′ =
√
L̄gn(θ̃)

 1

G

G∑
g=1

(
Lg
L̄

)
1√
L̄

Lg∑
i=1

fgi (θ̃)

′

=
√
L̄gn(θ̃)

 1

G

G∑
g=1

1√
L̄

Lg∑
i=1

fgi (θ̃)

′ (1 + op(1))

= L̄gn(θ̃)gn(θ̃)′(1 + op(1)).

Similarly, we obtain 1

n

G∑
g=1

L2
g

 · gn(θ̃)gn(θ̃)′ =

G∑
g=1

(
Lg
n

)2

· ngn(θ̃)gn(θ̃)′

=
1

G

G∑
g=1

(
Lg
L̄

)2

· L̄gn(θ̃)gn(θ̃)′

= L̄gn(θ̃)gn(θ̃)′(1 + op(1)),
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which gives the desired result in (B.47).
Now, using

√
n-consistency of θ̂CU-GEE , we can apply Lemma 7 to obtain Ω̂∗(θ̂CU-GEE) =

Ω̂c(θ0) + op(1). Invoking the continuous mapping theorem yields

√
n(θ̂CU-GEE − θ0)

d→ −
{

Γ′ (Ωc
∞)−1 Γ

}−1 {
Γ′ (Ωc

∞)−1 Λ
√
GB̄m

}
,

as desired.
For the CU-GMM estimator, we let Γ̂j(θ̂CU-GMM) be the j-th column of Γ̂j(θ̂CU-GMM). Then,

the FOC with respect to the j-th element of θ̂CU-GMM is

0 = Γ̂j(θ̂CU-GMM)′
[
Ω̂∗(θ̂CU-GMM)

]−1
gn(θ̂CU-GMM)

− gn(θ̂CU-GMM)′
[
Ω̂∗(θ̂CU-GMM)

]−1
Υj(θ̂CU-GMM)

[
Ω̂∗(θ̂CU-GMM)

]−1
gn(θ̂CU-GMM), (B.48)

where

Υ∗j (θ) =
1

n

G∑
g=1

 Lg∑
i=1

fgi (θ)

 Lg∑
i=1

∂fgi (θ)

∂θj

′ −
 1

n

G∑
g=1

L2
g

 · gn(θ)

(
∂gn(θ)

∂θj

)′

=
1

n

G∑
g=1

 Lg∑
i=1

fgi (θ)

 Lg∑
i=1

∂fgi (θ)

∂θj

′ − L̄(1 + o(1)) · gn(θ)

(
∂gn(θ)

∂θj

)′
.

Thus, the second term in (B.48) can be rewritten as

gn(θ̂CU-GMM)′
[
Ω̂∗(θ̂CU-GMM)

]−1
Υ∗j (θ̂CU-GMM)

[
Ω̂∗(θ̂CU-GMM)

]−1
gn(θ̂CU-GMM)

=
√
L̄gn(θ̂CU-GMM)′

[
Ω̂∗(θ̂CU-GMM)

]−1

 1

G

G∑
g=1

 1

L̄

Lg∑
i=1

fgi (θ̂CU-GMM)


×


 1

L̄

Lg∑
i=1

∂fgi (θ̂CU-GMM)

∂θj

− 1

G

G∑
g=1

 1

L̄

Lg∑
i=1

∂fgi (θ̂CU-GMM)

∂θj


′

×
[
Ω̂∗(θ̂CU-GMM)

]−1√
L̄gn(θ̂CU-GMM)(1 + op(1)).

Given that θ̂CU-GMM = θ0 +Op(L̄
−1/2) and Ω̂∗(θ̂CU-GMM) = Ω̂c(θ0) + op(1), we have

Ω̂∗(θ̂CU-GMM) = Op(1),√
L̄gn(θ̂CU-GMM) =

1

G

G∑
g=1

 1√
L̄

Lg∑
i=1

fgi (θ0)

+ Γ
√
L̄(θ̂CU-GMM − θ0) + op(1) = Op(1),

1

L̄

Lg∑
i=1

fgi (θ̂CU-GMM) =
1

L̄

Lg∑
i=1

fgi (θ0) +
1

L̄

Lg∑
i=1

∂fgi (θ̃)

∂θ
(θ̂CU-GMM − θ0) = Op

(
1√
L̄

)
,
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and for each g = 1, ..., G, 1

L̄

Lg∑
i=1

fgi (θ̂CU-GMM)


 1

L̄

Lg∑
i=1

∂fgk (θ̂CU-GMM)

∂θ

− 1

G

G∑
g=1

 1

L̄

Lg∑
i=1

∂fgi (θ̂CU-GMM)

∂θ


′

= Op

(
1√
L̄

)
· op(1) = op

(
1√
L̄

)
.

Combining these together, the second term in FOC in (B.48) is op(L̄−1/2). As a result,

Γ̂(θ̂CU-GMM)′
[
Ω̂∗(θ̂CU-GMM)

]−1
gn(θ̂CU-GMM) = op

(
1√
L̄

)
.

Using this result and Ω̂∗(θ̂CU-GMM) = Ω̂c(θ0) + op(1), we obtain the desired result as

√
n(θ̂CU-GMM − θ0) = −

{
Γ′
[
Ω̂∗(θ̂CU-GMM)

]−1
Γ

}−1

Γ′
[
Ω̂∗(θ̂CU-GMM)

]−1√
ngn(θ0) + op(1)

d→ −
{

Γ′ (Ωc
∞)−1 Γ

}−1
Γ′ (Ωc

∞)−1 Λ
√
GB̄m.
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B.7 Application to linear dynamic panel model

This subsection illustrates how to implement the GMM testing procedures in the context of linear
dynamic panel model under clustered dependence. Consider

yit = γyit−1 + x′itβ + ηi + uit, (B.49)

for i = 1, ..., n, t = 1, ..., T, where xit = (x1
it, ..., x

d−1
it )′ ∈ Rd−1. The unknown parameter vector is

θ = (γ, β′)′ ∈ Rd.We assume that the vector of regressors wit = (yit−1, x
′
it )′ is correlated with ηi

and is predetermined with respect to uit, i.e., E(wituit+s) = 0 for s = 0, ..., T − t.
When T is small, popular panel estimators such as the fixed-effects estimator or first-differenced

estimator suffer from the Nickel bias (Nickel, 1981). Anderson and Hsiao (1981) consider the first-
differenced equation

∆yit = ∆w′itθ + ∆uit, t = 2, ..., T,

and propose a consistent IV estimator that employs the lagged wit, e.g. wit−1 or ∆wit−1, as the
instrument. Building upon Anderson and Hsiao (1981), Arellano and Bond (1991, AB hereafter)
examine the problem in a GMM framework and find dT (T − 1)/2 sequential instruments:

Zi
(T−1)×d(T−1)T/2

= diag(z′i2, ..., z
′
iT ),

where zit = (yi0, ..., yit−2, x
′
i1, ..., x

′
it−1)′, 2 ≤ t ≤ T. The moment conditions are then given by

E
(
Z ′i∆ui

)
= 0,

where ∆ui is the (T − 1) vector (∆ui2, ...,∆uiT )′. The original AB method assumes away cross-
sectional dependence, but clustered dependence can be easily accommodated. Here we assume
that the moment vector {Z ′i∆ui}ni=1 can be partitioned into independent clusters. That is,
{Z ′i∆ui}ni=1 = ∪Gg=1 ∪

Lg
k=1 {Z

g′
k ∆ugk} with Z

g′
k ∆ugk and Z

h′
l ∆uhl being independent for all g 6= h.

The first-step GMM estimator with initial weighting matrix W−1
n is given by

θ̂1 =
(
∆w′ZW−1

n Z ′∆w
)−1

∆w′ZW−1
n Z ′∆y,

where Z ′ is the dT (T − 1)/2 × n(T − 1) matrix (Z ′1, Z
′
2, ..., Z

′
n), ∆wi is the (T − 1) × d matrix

(∆wi2,...,∆wiT )′, ∆yi is the (∆yi2,...,∆yiT )′, ∆w and ∆y are (∆w′1, ...,∆w
′
n)′ and (∆y′1, ...,∆y

′
n)′,

respectively. The examples of Wn’s can be Z ′Z/n for 2SLS and n−1
∑n

i=1 Z
′
iHZi where H is a

matrix that consists with 2’s on the main diagonal, with -1’s on the main diagonal, and zeros
elsewhere.

The Wald statistic3 for testing H0 : Rθ0 = r vs H1 : Rθ0 6= r is given by

F (θ̂1) :=
1

p
(Rθ̂1 − r)′

{
Rv̂ar(θ̂1)R′

}−1
(Rθ̂1 − r),

where

v̂ar(θ̂1) = n
(
∆w′ZW−1

n Z ′∆w
)−1

(
∆w′ZW−1

n Ω̂(θ̂1)W−1
n Z ′∆w

) (
∆w′ZW−1

n Z ′∆w
)−1

.

Let Z(g) be the L(T − 1) × dT (T − 1)/2 matrix obtained by stacking all Zi’s belonging to
cluster g. Similarly, let ∆û(g) be the Lg(T − 1) stacked vector of the estimated first-differenced

3The formula for the t statistic, which is omitted here, can be similarly constructed.
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errors ∆ûi = ∆yi−∆w′iθ̂1. Then, in the presence of clustered dependence, the CCE and centered
CCE are constructed as

Ω̂(θ̂1) =
1

G

G∑
g=1

(
Z ′(g)∆û(g)√

L̄

)(
Z ′(g)∆û(g)√

L̄

)′

and

Ω̂c(θ̂1) =
1

G

G∑
g=1

Z ′(g)∆û(g)√
L̄

− 1

G

G∑
g̃=1

Z ′(g̃)∆û(g̃)√
L̄

Z ′(g)∆û(g)√
L̄

− 1

G

G∑
g̃=1

Z ′(g̃)∆û(g̃)√
L̄

′ .
Using the centered CCE Ω̂c(θ̂1) as the weighting matrix, the two-step GMM estimator θ̂

c

2 is

θ̂
c

2 =

(
∆w′Z

[
Ω̂c(θ̂1)

]−1
Z ′∆w

)−1

∆w′Z
[
Ω̂c(θ̂1)

]−1
Z ′∆y,

and the t and Wald statistics for θ̂
c

2 is

FΩ̂c(θ̂1)(θ̂
c

2) =
1

p
(Rθ̂

c

2 − r)′{Rv̂arΩ̂c(θ̂1)(θ̂2)R′}−1(Rθ̂
c

2 − r),

v̂arΩ̂c(θ̂1)(θ̂
c

2) = n

{
∆w′Z

[
Ω̂c(θ̂1)

]−1
Z ′∆w

}−1

.

Under the conventional large-G asymptotics, both F (θ̂1) and FΩ̂c(θ̂1)(θ̂
c

2) are asymptotically χ2
p/p.

Under our fixed-G asymptotics, we have

F (θ̂1)
d→ G

G− pFp,G−p and

FΩ̂c(θ̂1)(θ̂
c

2)
d→ G

G− p− qFp,G−p−q
(
‖∆‖2

)
. (B.50)

In addition to utilizing these new approximations, we suggest a variance correction in order to
capture the higher order effect of θ̂1 on Ω̂c(θ̂1). The finite sample corrected variance is

v̂arw
Ω̂c(θ̂1)

(θ̂
c

2) = v̂arΩ̂c(θ̂1)(θ̂
c

2) + Ênv̂arΩ̂c(θ̂1)(θ̂
c

2) + v̂arΩ̂c(θ̂1)(θ̂
c

2)Ê ′n + Ênv̂ar(θ̂1)Ê ′n, (B.51)

where the j-th column is given by

Ên[., j] = −
(

∆w′Z
[
Ω̂c(θ̂1)

]−1
Z ′∆w

)−1

∆w′Z
[
Ω̂c(θ̂1)

]−1
×

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

[
Ω̂c(θ̂1)

]−1
Z ′∆û2,

∆û2 = ∆y −∆wθ̂
c

2,
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and

∂Ω̂c(θ)

∂θj

∣∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1),

Υj(θ̂1) = − 1

G

G∑
g=1

Z ′(g)∆wj,(g)√
L̄

− 1

G

G∑
g̃=1

Z ′(g̃)∆wj,(g̃)√
L̄

Z ′(g)∆û(g)√
L̄

− 1

G

G∑
g̃=1

Z ′(g̃)∆û(g̃)√
L̄

′ ,
∆wi

(T−1)×d
= (∆w1,i, ...,∆wd,i) and ∆w(g)

l(T−1)×d
= (∆w1,(g), ...,∆wd,(g))

for each j = 1, ..., d. Here, ∆w(g) is a Lg(T − 1)×d matrix that stacks {∆wi}ni=1 belonging to the
group g.

Based on the finite sample corrected variance estimator in (B.51) and the usual J statistic,
we construct the modified Wald and t statistics

F̃w
Ω̂c(θ̂1)

(θ̂
c

2) =
G− p− q

G

Fw
Ω̂c(θ̂1)

(θ̂
c

2)

1 + 1
GJ(θ̂

c

2)
, (B.52)

where

J(θ̂
c

2) = n · gn(θ̂
c

2)′
(

Ω̂c(θ̂
c

2)
)−1

(θ)gn(θ̂
c

2)

=

(
Z ′∆u(θ̂

c

2)√
n

)′ [
Ω̂c(θ̂

c

2)
]−1

(
Z ′∆u(θ̂

c

2)√
n

)
.

From the t and F limit theory in Section 4 and the fixed-G approximation of the finite sample
corrected variance in Section 5, we have

F̃w
Ω̂c(θ̂1)

(θ̂
c

2)
d→ Fp,G−p−q (B.53)

and
G− q
Gq

J(θ̂
c

2)
d→ Fq,G−q.

The critical values from the t and F distributions are readily available from statistical tables.
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B.8 Procedure for cluster-robust Hall and Horowitz (1996) two-step GMM-
bootstrap

Conditioning on the original sample {Z(g),∆u(g)(θ),∆y(g),∆w(g)}Gg=1, let {Z∗i ,∆y∗i ,∆u∗i (θ),∆w∗i }ni=1 =

∪Gg=1{ Z∗(g), ∆y∗(g),∆u
∗
(g)(θ),∆w

∗
(g)} be a cluster-wise bootstrap sample. Given the b-th resampled

data ∪Gg=1{ Z∗(g), ∆y∗(g),∆u
∗
(g)(θ),∆w

∗
(g)}, we can implement the GMM bootstrap procedure in

Hall and Horowitz (1996) as follows.
Step 1: With the recentered moment function (Z∗i )′∆u∗i (θ) − E∗[(Z∗i )′∆u∗i (θ̂1)], obtain a

bootstrap version of the initial estimator:

θ̂
∗
1,(b) =

[
(∆w∗)′ Z∗ [W ∗n ]−1 (Z∗)′∆w∗

]−1
(∆w∗)′ Z∗ [W ∗n ]−1

(
(Z∗)′∆y∗ − Z ′∆u(θ̂1)

)
.

, where W ∗n = n−1
∑n

i=1(Z∗i )′Z∗i .

Step 2: Obtain a bootstrap version of the two-step GMM weighting matrix Ω̂c∗(θ̂
∗
1,(b)) with

the recentered moment process (Z∗i )′∆u∗i (θ)− E∗[(Z∗i )′∆u∗i (θ̂2)]:

Ω̂c∗(θ̂
∗
1,(b); θ̂2) =

1

G

G∑
g=1

(Z∗(g))
′∆u∗(g)(θ̂

∗
1,(b))√

L̄
− 1

G

G∑
h=1

Z ′(h)∆u(h)(θ̂2)
√
L̄

 ×
(Z∗(g))

′∆u∗(g)(θ̂
∗
1,(b))√

L̄
− 1

G

G∑
h=1

Z ′(h)∆u(h)(θ̂2)
√
L̄

′ .
, and corresponding two-step GMM estimator:

θ̂
∗
2,(b) =

[
(∆w∗)′ Z∗

[
Ω̂c∗(θ̂

∗
1,(b))

]−1
(Z∗)′∆w∗

]−1

(∆w∗)′ Z∗
[
Ω̂c∗(θ̂

∗
1,(b))

]−1
×[

(Z∗)′∆y∗ − Z ′∆u(θ̂1)
]
.

Step 3: Construct the b-th bootstrap version of t statistic:

t∗(θ̂
∗
2,(b)) =

R(θ̂
∗
2,(b) − θ̂2)√

Rv̂ar
Ω̂c∗(θ̂

∗
1,(b);θ̂2)

(θ̂
∗
2,(b))R

′
,

where v̂ar
Ω̂c∗(θ̂

∗
1,(b))

(θ̂
∗
2,(b)) = n

(
(∆w∗)′ Z∗

[
Ω̂c∗(θ̂

∗
1,(b); θ̂2)

]−1
(Z∗)′∆w∗

)−1

, and J statistic:

J∗(θ̂
∗
2,(b); θ̂2) =

[
Z∗′∆u∗(θ̂

∗
2,(b))− Z ′∆u(θ̂2)
√
n

]′ [
Ω̂c∗(θ̂

∗
2,(b); θ̂2)

]−1
×[

Z∗′∆u∗(θ̂
∗
2,(b))− Z ′∆u(θ̂2)
√
n

]
.

Step 4: After repeating 1∼3 steps B-times, compute the two-side bootstrap p-values for t
and J statistics with
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p̂t,HH =
1

B

B∑
b=1

1
(∣∣∣t∗(θ̂∗2,(b))∣∣∣ > ∣∣∣t(θ̂2)

∣∣∣) and p̂J,HH =
1

B

B∑
b=1

1
(
J∗(θ̂

∗
2,(b)) > J(θ̂2)

)
.

Then, we reject Reject the null hypothesis H0 : Rθ = r iff

p̂t,HH 5 α

, and reject the null hypothesis of J test H0 : E (Z ′i∆ui) = 0 iff

p̂J,HH 5 α.
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B.9 Testing the level of clustering

The Ibragimov and Muller (2016, IM hereafter)’s test considers a scenario that empirical re-
searchers face a choice between a small number of coarse clusters and a large number of the finer
level of clusters. The null hypothesis is that a finer level of clustering is appropriate with a con-
sistent CCE estimator, against the alternative the only fewer clusters provide valid information.
As a general motivation, consider a linear regression

ygi = (Xg
i )′θ + εgi ,

where ygi and X
g
i are the i-th of Lg observations from cluster g = 1, . . . , G. Suppose a researcher is

interested in the j-th element of θ ∈ Rd, βj = e′jθ, where ej is a j-th standard basis vector in Rd.
We first partition sample into G clusters, and estimate the model only using the Lg subsamples
in cluster g and obtain β̂

g

j for each g = 1, . . . G, and compute the following statistics S2:

S2 =
1

G− 1

G∑
g=1

(β̂
g

j − β̂)2 where β̂ =
1

G

G∑
g=1

β̂
g

j . (B.54)

In the estimation of β̂
g

j , one also calculates its cluster-robust standard errors σ̂g assuming the
finer level of clustering within each group g is appropriate. To obtain the critical value of S2, we

draw Yg
i.i.d∼ N(0, σ̂2

g) for g = 1, . . . , G, and compute

S2
Y =

1

G− 1

G∑
g=1

(Yg − Ȳ )2 where Ȳ =
1

G

G∑
g=1

Yg. (B.55)

When the test statistics S2 is larger than 95% empirical quantile of the 10, 000 draws of S2
Y , the

test rejects the null hypothesis of validity of finer level of clustering. IM (2016) shows that the
test is asymptotically size corrected, and has a non-trivial asymptotic power when the fine level
of clustering ignores correlation among the observations in the coarser cluster.

In our empirical example in Section 7, we consider a finer clustering at the level of individuals.
To apply the IM’s test, we first need to estimate the key parameter of interests, βd, βs, and βds
including all nuisance parameters at each county level cluster. However, we note that the sub-
samples at each county in Emran and Hou (2013)’s data set are insuffi cient to estimate the full
regression equation in Section 7. This is mostly coming from having control variables that do not
have suffi cient within-cluster (within-county) variations. Thus, as the next best thing, we could
estimate the cluster-specific OLS estimators, β̂

g

d, β̂
g

s, and β̂
g

ds, for each county cluster g by only
considering the key variables of interests in the regression. We also compute the corresponding
robust standard errors, σ̂gd, σ̂

g
s, and σ̂gds at the level of individual clustering. Based on these

estimates, we construct the test statistics and corresponding critical values as in (B.54)—(B.55)
for each parameter of interests. The corresponding p-values of tests are reported in Table 8 in
the main body of the paper.

31



References

[1] Anderson, T. W. and Hsiao, C. (1981): “Estimation of dynamic models with error compo-
nents.”Journal of the American statistical Association, 76(375), 598-606.

[2] Arellano, M. and Bond, S. (1991): “Some tests of specification for panel data: Monte Carlo
evidence and an application to employment equations.”The Review of Economic Studies, 58(2),
277-297.

[3] Bester, C.A., Conley, T.G. and Hansen, C.B., 2011. “Inference with dependent data using
cluster covariance estimators.”Journal of Econometrics, 165(2), pp.137-151.

[4] Bolthausen, E., 1982. “On the central limit theorem for stationary mixing random fields.”
The Annals of Probability, pp.1047-1050.

[5] Conley, T.G., 1999. “GMM estimation with cross sectional dependence.” Journal of econo-
metrics, 92(1), pp.1-45.

[6] Dedecker, J., 1998. “A central limit theorem for stationary random fields.”Probability Theory
and Related Fields, 110(3), pp.397-426.

[7] Emran, M. S., and Hou, Z. (2013): “Access to markets and rural poverty: evidence from
household consumption in China.”Review of Economics and Statistics, 95(2), 682-697.

[8] Hansen, L.P., Heaton, J. and Yaron, A., (1996). “Finite-sample properties of some alternative
GMM estimators.”Journal of Business & Economic Statistics, 14(3), pp.262-280.

[9] Hansen, B.E. and Lee, S., (2018). “Inference for iterated GMM under misspecification and
clustering.”UNSW Business School Research Paper, (2018-07).

[10] Hall, P., and Horowitz, J. L. (1996): “Bootstrap critical values for tests based on generalized-
method-of-moments estimators.”Econometrica: Journal of the Econometric Society, 891-916.

[11] Hall, P.G. and Hyde, C.C., “Martingale Central Limit Theory and its Applications.”1980.

[12] Hwang, J., and Sun, Y. (2017a): “Asymptotic F and t Tests in an Effi cient GMM Setting.”
Journal of Econometrics, 198(2), 277-295.

[13] Jenish, N. and Prucha, I.R., 2009. “Central limit theorems and uniform laws of large numbers
for arrays of random fields.”Journal of econometrics, 150(1), pp.86-98.

[14] Jiang, J., Luan, Y., and Wang, Y. G. (2007): “Iterative estimating equations: Linear con-
vergence and asymptotic properties.”The Annals of Statistics, 35(5), 2233-2260.

[15] Liang, K.-Y. and Zeger, S. (1986): “Longitudinal Data Analysis Using Generalized Linear
Models.”Biometrika 73(1):13-22.

[16] Nickell, S. (1981): “Biases in dynamic models with fixed effects.”Econometrica: Journal of
the Econometric Society, 1417-1426.

[17] Sun, Y. (2014): “Fixed-smoothing Asymptotics in a Two-step GMM Framework.”Econo-
metrica 82(6), 2327-2370.

32



[18] Zhang, X. (2016): “Fixed-smoothing asymptotics in the generalized empirical likelihood
estimation framework.”Journal of Econometrics, 193(1), 123-146.

33


	Introduction
	Basic Setting and the First-step GMM Estimator
	Two-step GMM Estimation and Inference
	Uncentered Two-step GMM estimator
	Centered Two-step GMM estimator

	Asymptotic F and t Tests for Centered Two-step GMM Procedures
	Finite Sample Variance Correction
	Simulation Evidence
	Design
	Choice of tests
	Results with balanced and homogeneous cluster size
	Size experiment
	Power experiment  

	Results with unbalanced and heterogeneous clusters
	Unbalanced Clusters
	Heterogeneous Clusters


	Empirical Application
	Model and choice of clusters
	Results

	Conclusion
	Clustered (Grouped) dependence in spatial setting
	Primitive conditions for ULLN of Jacobian Process
	Primitive conditions for CLT for Group Means
	Proof of Propositions ?? and ??

	Proof of Proposition ??
	Proof of Proposition ??
	Asymptotics for LM and QLR statistics
	Proof of Proposition ??

	Asymptotically unbalanced sizes in clusters
	Proof of Proposition ??

	Iterative Two-step and continuous updating Schemes 
	Proof of Proposition ??

	 Application to linear dynamic panel model 
	Procedure for cluster-robust Hall and Horowitz (1996) two-step GMM-bootstrap
	Testing the level of clustering


