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1 Edgeworth Expansion for the Sample Mean

1.1 Review of Central Limit Theorem

Theorem 1 (Lévy’s continuity) Let Zn be a sequence of random variables. The se-

quence of corresponding characteristic function (ch.f) ϕZn(t), which by definition are

ϕZn(t) = EeitZn for all t ∈ R and all n ∈ N.

If the sequence of characteristic functions converges to pointwise to some function

ϕ(·), i.e. ϕZn(t) → ϕ(t) for all t ∈ R. Then, Zn
d→ Z for some random variable Z if and

only if ϕZ(t) := ϕ(t) is continuous at t = 0.
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Lemma 1 If E|Xk| <∞, then∣∣∣∣∣∣ϕX(t)−
k∑
j=0

(it)jE(Xj)

j!

∣∣∣∣∣∣ ≤ E

[
min

{
2|tX|k
k!

,
|tX|k+1
(k + 1)!

}]
.

Proof. Expanding the function eitx up to k times yields

eitx = 1 + (itx) +

(
itx

2!

)2
+ ... +

(
itx

k!

)k
exp(itα∗x)

=

k∑
j=0

(
itx

j!

)j
+

(
itx

k!

)k
(exp(itα∗x)− 1) (1)

for some α∗ ∈ [0, 1]. It is not difficult to check that the second term in the last equality is
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bounded by 2|tx|k/k!. Repeating the expansion of exp(itx) up to k+ 1 term also gives

eitx =

k∑
j=0

(itx)j

j!
+

(itx)k+1

(k + 1)!
exp(itα̃x) (2)

for some α̃ ∈ [0, 1]. Here the second term on the right is bounded by |tx|k+1/(k + 1)!.
Combining (1) and (2), we have∣∣∣∣∣∣eitx −

k∑
j=0

(itx)j

j!

∣∣∣∣∣∣ ≤ min

{
2|tx|k
k!

,
|tx|k+1
(k + 1)!

}
,

and the results follows by taking expectations on both sides and modulus inequality.
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Theorem 2 (Lindberg-Lévy CLT) If {Xi}ni=1 is an i.i.d sequence of random variables

having mean µand variance σ2, then

Zn =
1√
n

n∑
i=1

(Xi − µ)

σ

d→ N(0, 1).

Proof. Without loss of generality (WLOG), we assume µ = 0 and σ2 = 1. From the

i.i.d. assumption, the ch.f Xi’s are all identical to ϕX(t) = ϕX1
(t) for all t, and

ϕZn(t) = ϕX

(
t√
n

)n
.
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Applying Lemma 1 with k = 2, we have∣∣∣∣ϕX ( t√
n

)
− 1 +

t2

2n

∣∣∣∣ ≤ E

[
min

{
t2|X|2
n

,
t3|X|3
6t3/2

}]
≤ 1

n
E

[
min

{
t2|X|2, t

3|X|3
6n1/2

}]
We claim that the rightside in the last equality is o(n−1) by showing that

E

[
min

{
t2|X|2, t

3|X|3
6n1/2

}]
→ 0 as n→∞. (3)

To see this, observe that on the one hand

min

{
t2|X|2, t

3|X|3
6n1/2

}
≤ t2|X|2 a.s.

and the bound on the inequality is L1-integrable. Also,

min

{
t2|X|2, t

3|X|3
6n1/2

}
≤ t3|X|3

6n1/2
→ 0 a.s. as n→∞.
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Therefore, we can apply the dominated convergence theorem to conclude (3), which

makes it possible to expand φX(λ/(σ
√
n)) as

φX

(
t√
n

)
= 1− t2

2n
+ o

(
1

n

)
,

and

ϕZn(t) = ϕX

(
t√
n

)n
=

{
1− t2

2n
(1 + o(1))

}n
→ exp

(
−t

2

2

)
= φZ(t), as n→∞,

which is a ch.f of standard normal random variable. By Lévy’s continuity theorem, we

have the desired result.
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Comments

• Let Gn(·) denote the cdf of Zn. By CLT, for every x ∈ R,

Gn(x) = lim
n→∞

Φ(x),

where Φ(x) is the cdf of the standard random variable Z.

• Thus, CLT justifies approximating the cdf of Zn by that of Z for sufficiently large n,
i.e.

Gn(x) = Φ(x) + o(1).

• One way to measure, the term o(1), the discrepancy between the actual distribution

of sample statistics and asymptotic distribution is by higher-order expansions.

• Higher-order expansions of the distribution function are known as Edgeworth ex-

pansions.
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Definition 1 (Cumulants) Let KX(t) = logMX(t) be a cumulant generating function

(cgf) of random variable X which is the log of the moment generating function (mgf)

MX(t). The r-th cumulant of the distribution X, κr, is the r-th derivative of K(t), evalu-

ated at t = 0, i.e.

κr =
dr

dtr
K(t)

∣∣∣∣
t=0

= K(r)(0).

• Since M(0) = 1, we see K(0) = 0. Expanding as a power series we obtain

K(t) =

∞∑
r=1

κr
tr

r!
.

• Define the r-th central moment as µr = E(X −E(X))r. Then, the first six cumulants

are computed as follows:

κ1 = µ1, κ2 = µ2, κ3 = µ3; (4)

κ4 = µ4 − 3µ22, κ5 = µ5 − 10µ3µ2;

κ6 = µ6 − 15µ4µ2 − 10µ23 + 30µ32,

which are polynomial functions of the central moments.
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Definition 2 (Hermite polynomial) Let φ(x) be the cdf and pdf of standard normal ran-

dom variable, respectively, and

Hj(x) = (−1)j
φ(j)(x)

φ(x)

is the j-th In particular,

H2(x) = x2 − 1, H3(x) = x3 − 3x; H5(x) = x5 − 10x3 + 15x.

Assumption 1 {Xi} is i.i.d random variables with E(X4
i ) <∞.

Assumption 2 The characteristic function of Xi satisfies lim sup|t|→∞ |ϕX(t)| < 1.
• Assumption 2 is known as Cramer’s condition - requires that the distribution of Xi to

have an absolutely continuous component.

Theorem 3 (Edgeworth expansion) An Edgeworth expansion is a series representa-

tion for Gn(x) expressed as powers of n−1/2, i.e.

Gn(x) = P (Zn ≤ x) (5)

= Φ(x)− 1√
n

(κ3
6
H2(x)

)
φ(x)− 1

n

(
κ4
24
H3(x) +

κ23
72
H5(x)

)
φ(x) + o

(
1

n

)
.
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Before we prove the theorem, we introduce a useful technical result in Hermite polyno-

mials.

Lemma 2 The Hermite polynomials satisfy

d

dx
(Hj(x)φ(x)) =

d

dx

(
(−1)jφ(j)(x)

)
(6)

= −(−1)j+1φ(j+1)(x)

= −Hj+1(x)φ(x),

and by the formula for normal mgf, the fact H0(x) = 1, and repeated integration by

parts,

exp

(
t2

2

)
=

∫ ∞
−∞

etxφ(x)dx = t−j
∫ ∞
−∞

etxHj(x)φ(x)dx

⇒ exp

(
t2

2

)
tj =

∫ ∞
−∞

etxHj(x)φ(x)dx (7)

for j = 0, 1, 2, . . . .
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Proof. [of Theorem 3] We assume that the moment generating function MZn(t) =
E[etZn] exists, and use it to derive (5). WLOG, assume µ = 0 and σ2 = 1. By definitions

of the cumulants and (4),

K

(
t√
n

)
=

∞∑
r=1

κr
r!

(
t√
n

)r
=

(
1

n

)
t2

2!
+
( κ3
n3/2

) t3
3!

+
(κ4
n2

) t4
4!

+ o(n−2).

Then, it is easy to check

MZn(t) = exp

(
n log(E[exp(

tXi√
n

)]

)
= exp

(
nKX

(
t√
n

))
= exp

(
t2

2!
+
κ3√
n

t3

3!
+
κ4
n

t4

4!
+ o(n−1)

)
= exp

(
t2

2

)
exp

(
κ3√
n

t3

3!
+
κ4
n

t4

4!
+ o(n−1)

)
.
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Using a second-order expansion of exponential function, i.e.

exp
(
x + o(n−1)

)
= 1 + x +

x2

2
+ o(n−1)

→ exp

(
κ3√
n

t3

3!
+
κ4
n

t4

4!
+ o(n−1)

)
= 1 +

κ3√
n

t3

6
+
κ4
n

t4

24
+
κ23
n

t6

72
+ o(n−1),

we get

MZn(t) = exp

(
t2

2

)
+ exp

(
t2

2

)
t3
κ3
6︸ ︷︷ ︸∫∞

−∞ e
txH3(x)φ(x)dx

× 1√
n

+ exp

(
t2

2

)(
κ4
24
t4 +

κ23
72
t6
)

︸ ︷︷ ︸∫∞
−∞ e

txHe4(x)φ(x)dx
κ4
24+
∫∞
−∞ e

txH6(x)φ(x)dx
κ23
72

× 1

n
+ o(n−1).
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Substituting (7) into the above equation ,

MZn(t) =

∫ ∞
−∞

etxφ(x)dx +

(∫ ∞
−∞

etxH3(x)φ(x)dx

)
κ3

6
√
n

+

(∫ ∞
−∞

etxH4(x)φ(x)dx
κ4
24∫ ∞

−∞
etxH6(x)φ(x)dx

κ23
72

)
1

n
+ o(n−1)

=

∫ ∞
−∞

etx
(
φ(x) +

κ3
6
√
n
H3(x)φ(x) +

1

n

(
κ4
24
H4(x) +

κ23
72
H6(x)

)
φ(x)

)
dx + o(n−1).

From (6),

Hj+1(x)φ(x)dx = −dHj(x)φ(x).

Using this we find

MZn(t) =

∫ ∞
−∞

etxdGn(x)

=

∫ ∞
−∞

etxd

(
Φ(x)− κ3

6
√
n
H2(x)φ(x)− 1

24n

(
κ4H3(x) +

κ23
3
H5(x)

)
φ(x)

)
+ o(n−1),

and this shows that Gn(x) is approximated by the distribution in the bracket which is
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the desired results.

Remark

• The expansion (5) may not be convergent. It is interpreted as an asymptotic series,

meaning that the remainder is of a smaller order than the last included term.

• The expansion (5) can be interpreted as the sum of the normal distribution Φ(x),
a n−1/2 correction for the main effect of skewness, and n−1 correction for the main

effect of kurtosis and the secondary effect of skewness.

• The n−1/2 skewness correction is an even function of x which means it changes the

distribution function symmetrically about zero.

• The n−1/2 skewness correction is an odd function of x.
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1.2 Edgeworth Expansion for Smooth Function Model

Theorem 4 (Smooth function model ) If {Xi}ni=1 are independent and identically dis-

tributed, µ = E[h(Xi)], E||h(Xi)||4 < ∞, g(·) has four continuous derivatives in a

neighborhood of µ, and E(exp(t||h(Xi)||)) ≤ B < 1, for µ̂ = n−1
∑n

i=1 h(Xi), V =
E[(h(Xi)− µ)(h(Xi)− µ)′) and G = ∂

∂ug(u)′
∣∣
u=µ

= G(µ), as n→∞

Tn =

√
n(g(µ̂)− g(µ))√

G′V G
.

Then,

P (Tn ≤ x) = Φ(x) +
1√
n
p1(x)φ(x) +

1

n
p2(x)φ(x) + o(n−1), (8)

uniformly in x, p1(x) is an even polynomial of order 2, and p2(x) is an odd polynomial of

degree 5, with coefficients depending on the moments of h(Xi) up to order 4.

• The expansion is identical to that in (2). The only difference is in the coefficients of

the polynomials.
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• One implication is that when the normal distribution Φ(x) is used as an approximation

to the actual distribution of P (Tn ≤ x), the error is O(n−1/2).

Corollary 1 Let assumptions in Theorem 4 be true, then the result of Theorem 4 applies

to feasible version studentized statistics such as the t-ratio Tn, replacing G′V G with

Ĝ′V̂ Ĝ, so long as the variance estimator Ĝ′V̂ Ĝ can be written as function of sample

means as

Ĝ = G(µ̂) and V̂ =
1

n

n∑
i=1

(h(Xi)− µ̂) (h(Xi)− µ̂)′ .

The polynomials p1(x) and p2(x) have same orders as Theorem 4 but their coefficients

depending on the moments of h(Xi) up to order 8.

• Sometimes we are interested in the distribution of the absolute value of the t-ratio |T |
whose distribution is

P (|Tn| ≤ x) = P (−x ≤ Tn ≤ x) = P (Tn ≤ x)− P (Tn < −x).
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From Theorem 4, this equals

Φ(x) +
1√
n
p1(x)φ(x) +

1

n
p2(x)φ(x) (9)

−
(

Φ(−x) +
1√
n
p1(−x)φ(−x) +

1

n
p2(−x)φ(−x)

)
+ o(n−1)

= (2Φ(x)− 1) +
2

n
p2(x)φ(x) + o(n−1).

• Thus, when the normal distribution (2Φ(x) − 1) is used as an approximation to the

actual distribution P (|Tn| ≤ x), the error is O(n−1).

• There is also a version of the Delta Method for Edgeworth expansions. Especially,

if two random variables differ by Op(an) then they have the same Edgeworth expan-

sions up to O(an).

Theorem 5 (Delta method Edgeworth expansions) Suppose that the distribution of a

random variable T̃n has the Edgeworth expansion

P (T̃n ≤ x) = Φ(x) + a−1n p1(x)φ(x) + o(a−1n )
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and a random variable Tn satisfies Tn = T̃n + op(a
−1
n ). Then, Tn has the following Edge-

worth expansion

P (Tn ≤ x) = Φ(x) + a−1n p1(x)φ(x) + o(a−1n ).

Proof. [Proof of Theorem 5] From the assumption Tn = T̃n + op(a
−1
n ), for any ε > 0,

there is n sufficiently large such that P (|Tn − T̃n| > a−1n ε) ≤ ε. Then,

P (Tn ≤ x) = P (Tn ≤ x, |Tn − T̃n| ≤ a−1n ε) + ε

≤ P (T̃n ≤ x + a−1n ε) + ε

= Φ(x + a−1n ε) + a−1n p1(x + a−1n ε)φ(x + a−1n ε) + ε + o(a−1n )

≤ Φ(x) + a−1n p1(x)φ(x) + o(a−1n ).

Similarly, one can show that P (Tn ≤ x) ≥ Φ(x) + a−1n p1(x)φ(x) + o(a−1n ).
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1.3 Cornish-Fisher Expansions
• For some purposes it is useful to have similar expansions for the inverse of the dis-

tribution function, which are the quantiles of the distribution. Such expansions are

known as Cornish-Fisher expansions of finite sample quantile.

• This will be a key device to prove a high-order refinement of percentile-t bootstrap.

Theorem 6 (Cornish-Fisher expansions) Suppose that the distribution of a random vari-

able Tn has the Edgeworth expansion

Gn(x) = P (Tn ≤ x) = Φ(x) +
1√
n
p1(x)φ(x) +

1

n
p2(x)φ(x) + o

(
1

n

)
(10)

uniformly in x. For any α ∈ (0, 1), let qα and zα be the α-th quantile of Gn(·) and Φ(·),
that is the solutions to Gn(qα) = α and Φ(zα) = α. Then,

qα = zα +
1√
n
p11(zα) +

1

n
p21(zα) + o

(
1

n

)
,
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where

p11(x) = −p1(x);

p21(x) = −p2(x) + p1(x)p′1(x)− 1

2
xp1(x)2.

• Let q̃α = zα + 1√
n
p11(zα) + 1

np21(zα) be an asymptotically refined approximation of the

true quantile qα. By Edgeworth expansion Delta method, Tn and Tn + (qα − q̃α) =
Tn + o(n−1) have the same Edgeworth expansion to order o(n−1). Thus,

Gn(q̃α) = P (Tn ≤ q̃α)

= P (Tn + (qα − q̃α) ≤ qα)

= P (Tn ≤ qα) + o(n−1)

= α + o(n−1).

In contrast, the standard first-order approximated quantile zα is with

Gn(zα) = α + O

(
1√
n

)
,

which follows by the Edgeworth expansion in (5).
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Proof. We derive the result of Theorem 6 using Taylor expansions. Evaluating the

Edgeworth expansion (10) at q̃α, we have

Gn(q̃α) = Φ(q̃α) +
1√
n
p1(q̃α)φ(q̃α) +

1

n
p2(q̃α)φ(q̃α) + o

(
1

n

)
.

For the first term,

Φ(q̃α) = Φ

(
zα +

1√
n
p11(zα) +

1

n
p21(zα)

)
,

and the second term and third term are

1√
n
p1(q̃α)φ(q̃α) =

1√
n
p1

(
zα +

1√
n
p11(zα)

)
φ

(
zα +

1√
n
p11(zα)

)
+ o

(
1

n

)
;

1

n
p2(q̃α)φ(q̃α) =

1

n
p2(zα)φ(zα) + o

(
1

n

)
.
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Summing up,

α + o

(
1

n

)
= Gn(q̃α) = Φ

(
zα +

1√
n
p11(zα) +

1

n
p21(zα)

)
+

1√
n
p1

(
zα +

1√
n
p11(zα)

)
φ

(
zα +

1√
n
p11(zα)

)
+

1

n
p2(zα)φ(zα) + o

(
1

n

)
.

Now, expand Φ(·) in a second-order Taylor expansion and p1(·) and φ(·) in first-order

expansions, both about zα, using φ(x)′ = −xφ(x), and get

1√
n
p1

(
zα +

1√
n
p11(zα)

)
︸ ︷︷ ︸
=p1(zα)+

1√
n
p11(zα)p′1(zα)+O(

1
n)

× φ

(
zα +

1√
n
p11(zα)

)
︸ ︷︷ ︸

=φ(zα)− 1√
n
zαp11(zα)φ(zα)+O(

1
n)

=
1√
n
p1 (zα)φ (zα) +

1

n
p′1 (zα) p11(zα)φ (zα)

−1

n
zαp1 (zα) p11(zα)φ (zα) + o

(
1

n

)
,
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and

Φ

(
zα +

1√
n
p11(zα) +

1

n
p21(zα)

)
(11)

= Φ (zα) +
1√
n
p11(zα)φ(zα) +

1

n

(
p21(zα)− zαp

2
11(zα)

2

)
φ(zα) + o

(
1

n

)
.

Combining these into (11), we get

Gn(q̃α) = Φ

(
zα +

1√
n
p11(zα) +

1

n
p21(zα)

)
+

1√
n
p1

(
zα +

1√
n
p11(zα)

)
φ

(
zα +

1√
n
p11(zα)

)
+

1

n
p2(zα)φ(zα) + o

(
1

n

)
= Φ (zα)︸ ︷︷ ︸

=α

+
1√
n
φ(zα) (p11(zα) + p1 (zα))

+
1

n

(
p21(zα)− zαp

2
11(zα)

2
+ p′1 (zα) p11(zα)− zαp1(zα)p11(zα) + p2(zα)

)
φ(zα)

+o

(
1

n

)
.
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For the first three terms to be equal to α, we deduce that

p11(x) = −p1(x);

p21(x) = −p2(x) + xp1(x)p11(x)− p′1 (x) p11(x) +
xp211(x)

2

= −p2(x)− xp21(x) +
xp21(x)

2
+ p′1 (x) p1(x)

= −p2(x) + p′1 (x) p11(x)− 1

2
xp1(x)2,

which is the desired result.
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2 Bootstrap and Asymptotic Refinements
• The distribution of any estimator or statistic is determined by the distribution of the

data. While the latter is unknown, it can be estimated by the empirical distribution of

the data which is the idea of the bootstrap.

• Let F (u) = P (wi ≤ u) denote the (unknown) distribution of an individual observation

wi, andWn = (w1, . . . , wn)′. LetGn(u, F ) be the distribution of a asymptotically pivotal

test-statistic Tn for an estimator θ̂n = θ̂(Wn). That is,

Gn = Gn(u, F ) = P (θ̂n ≤ u|F ).

• In practice, there are two barriers to implement Gn(u, F ). The first barrier is that the

analytical calculation of the exact distribution Gn(u, F ) is infeasible in most cases

even if we know what is F, except in certain special cases such as the normal re-

gression model. The second barrier is in general we do not know about F .

• The bootstrap method simultaneously circumvents these two barriers by two clever
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ideas. First, we replace F with F̂n, an empirical distribution of wi, i.e.

F̂n := F̂n(u) =
1

n

n∑
i=1

1(wi ≤ u),

and obtain the ideal bootstrap estimator of the distribution of Tn(for θ̂n) as

Ĝ∗n = Gn(u, F̂n).

• Note that the moments and cumulants generated by F̂n are exact sample counter

parts, i.e. sample moments and sample cumulants, respectively, of population ones

generated by F (u).

• Still, G∗n is unknown in practice. But the bootstrap proposes estimation of G∗n by

simulation {W ∗
n,b}Bb=1 from F̂n which is simply sampling each random draws W ∗

n,b =
(w∗1,b, . . . , w

∗
n,b)
′with replacement from the original data many many times. After the

bootstrap sampling, we apply the estimation formula θ̂n = θ̂(Wn) and Tn, and thus

obtain i.i.d draws from {θ̂∗b}Bb=1 and {θ̂∗b}Bb=1with {T ∗n,b}Bb=1. By making a large number

of B which is close to ∞ of bootstrap draws {θ̂b}Bb=1, we can equivalently calculate

any feature of Ĝ∗n of interest.
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2.1 Percentile-t asymptotic refinements
• Recall that the one-sided asymptotic confidence interval have accuracy to order

O(n−1/2).

• From Theorem 6, Cornish-Fisher expansion of the true quantile qα,n := qα for a t-ratio

Tn for θ̂n in the smooth function model,

qα = zα +
1√
n
p11(zα) + O

(
1

n

)
,

where p11(x) is an even polynomial of order 2 with coefficients depending on the

moments of Wi = h(Xi) generated by F (u) up to order 8.

• The bootstrap quantile q∗α,n = q∗α of T ∗n from {θ̂∗b}Bb=1 has a similar Cornish-Fisher

expansion

q∗α = zα +
1√
n
p∗11(zα) + Op

(
1

n

)
,

where p∗11(x) is the same as p11(x) except the moments of Wi are replaced by the

corresponding sample moments generated by bootstraped sampleW ∗
n,b (bootstraped
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distribution F̂n).

• The sample moments in the definitions of p∗11(zα) are (automatically) estimated at the

rate n−1/2, i.e. p∗11(zα) = p11(zα) + Op

(
1
n

)
. Thus we can replace p∗11 with p11 without

affecting the order of the expansion, i.e.

q∗α = zα +
1√
n
p11(zα) + Op

(
1

n

)
= qα + Op

(
1

n

)
,

which shows that the boostrap quantiles of q∗α of the studentized t-ratio are within

Op

(
1
n

)
of the exact quantiles of qα.

• By Edgeworth expansion Delta method, Corollary 1, Tn and Tn + (qα − q∗α) = Tn +
Op(n

−1) have the same Edgeworth expansion to order O(n−1). Thus,

P (Tn ≤ q∗α) = P (Tn + (qα − q∗α) ≤ qα)

= P (T ≤ qα) + O(n−1)

= α + O(n−1),
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which is the improved rate of the convergence relative to the one-sided test using

asymptotic critical value zα. Similarly, the coverage of the percentile-t interval is

P (θ ∈ Cpt) = P (q∗α/2 ≤ T ≤ q∗1−α/2)

= P (T ≤ q∗1−α/2)− P (T < q∗α/2)

= (1− α/2)− α/2 + O(n−1)

= 1− α + O(n−1).

• In the smooth function model the t-test (with correct standard error) has the following

performance.

Theorem 7 Under the assumption of Corollary 1,

q∗1−α = q1−α + op(n
−1),

where q∗1−α and q1−α are (1 − α)th quantile of the distribution of |T ∗n | and |Tn|, respec-

tively. Also, the asymptotic test ”Reject H0” in favor of H1 if |Tn| ≥ z1−α” has accuracy

P
(
|Tn| > z1−α/2|H0

)
= 1− α + O(n−1),

and the symmetric two-sided (percentile) bootstrap t-test "Reject H0 in favor of H1 if
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|T | ≥ q∗1−α has accuracy

P
(
|Tn| > q∗1−α|H0

)
= 1− α + o(n−1).

Proof. We haven shown in (9)

P (|Tn| ≤ x|H0) = (2Φ(x)− 1) +
2

n
p2(x)φ(x) + o(n−1),

which means the asymptotic test has accuracy of order O(n−1). Given the Edgeworth

expansion, we apply the Cornish-Fisher expansion in Theorem 6 for the α-th quantile

qα of the distribution of |Tn| takes the form

qα = zα +
1

n
p21(zα) + o(n−1).

Also, the bootstrap quantile q∗α has the Cornish-Fisher expansion,

q∗α = zα + n−1p∗21(zα) + o(n−1);

= zα + n−1p21(zα) + op(n
−1);

= qα + op(n
−1),
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where p∗21(x) is the same as p21(x) except the moment of h(Xi) are replaced by the

corresponding sample moments. Then, the bootstrap test has rejection probability,

using the Edgeworth expansion Delta method in Theorem ?? as

P
(
|Tn| ≥ q∗1−α|H0

)
= P

(
|Tn| + (q1−α − q∗1−α) ≥ q1−α|H0

)
= P (|T | ≥ q1−α|H0) + o(n−1)

= 1− α + o(n−1)

as claimed!



Note on Edgeworth Expansions and Asymptotic Refinements of Percentile t-Bootstrap Methods 33

3 Review: Edgeworth Expansions for Sample Mean

3.1 When σ2 is known
Let {Xi}ni=1 be an i.i.d sequence of random variables having mean µ and (known)

variance σ2, and define

Zn =
1√
n

n∑
i=1

(Xi − E[Xi])

V ar[Xi]1/2

=
1√
n

n∑
i=1

Xi − µ
σ

which is a studentized statistics. Assuming E(X4
i ) <∞, and the characteristic function

of Xi, ϕX(·), satisfies lim sup|t|→∞ |ϕX(t)| < 1, we have

Gn(x;F ) = P (Zn ≤ x)

= Φ(x)− 1√
n
p1(x)φ(x)− 1

n
p2(x)φ(x) + o

(
1

n

)
,
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where

p1(x) =
κ3
6

(x2 − 1);

p2(x) =
κ4
24

(x3 − 3x) +
κ23
72

(x5 − 10x3 + 15x).

Also, if we apply Cornish-Fisher expansion to the finite-sample (1−α)-th quantile qZn,α,

we get

qα = zα +
1√
n
p11(zα) +

1

n
p22(zα) + o

(
1

n

)
,

where zα is (1− α)th quantile of standard normal, and

p11(x) = −p1(x);

p22(x) = −p2(x) + p1(x)p′1(x)− 1

2
xp1(x)2.

• Now, let F̂ (x) = 1
n

∑n
i=1 1(Xi ≤ x) be an empirical cdf of {Xi}ni=1. Then, one can

always simulate a b-th bootstraped sample {X∗i,b}ni=1 from F̂ (·). Note that conditioning
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on {Xi}ni=1, the expected value of the bootstraped sample {X∗i,b}Bb=1 is

E∗[X∗i,b] :=

∫
R
X∗i,bdF̂ =

1

n

n∑
i=1

Xi = µ̂1.

Similarly,

V ar∗[X∗i,b] = E∗[X∗2i,b ]− E∗[X∗i,b]2

=
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2

= µ̂2,

and corresponding 3rd to 6th cumulants of {X∗i,b}Bb=1 are

κ̂3 = µ̂3, κ̂4 = µ̂4 − 3µ̂22;

κ̂5 = µ̂5 − 10µ̂3µ̂2;

κ̂6 = µ̂6 − 15µ̂4µ̂2 − 10µ̂23 + 30µ̂32.
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• Let

Z∗n,b =
1√
n

∑n
i=1(X

∗
i,b − E∗[X∗i,b])
σ

=
1√
n

∑n
i=1(X

∗
i,b − X̄)

σ

be a bootstrap analogue of the sample statistic.

• Note that the bootstrap simulation of {Z∗n,b}Bb=1 enables us to numerically calculate its

cdf

Gn(x, F̂ ) = P (Z∗n,b ≤ x)

with its (1− α)th quantile qZ∗n,α. Also, one may show that there is also an Edgeworth

Expansion of probability distribution the random variable Z∗n,b as below

Gn(x, F̂ ) = P (Z∗n,b ≤ x) = Φ(x)− 1√
n
p̂1(x)φ(x)− 1

n
p̂2(x)φ(x) + op

(
1

n

)
,
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with

p̂1(x) =
κ̂3
6

(x2 − 1);

p̂2(x) =
κ̂4
24

(x3 − 3x) +
κ̂23
72

(x5 − 10x3 + 15x),

and corresponding Cornish-Fisher expansion to (1− α)th quantile qZ∗n,α,

qZ∗n,α = zα +
1√
n
p̂11(x) +

1

n
p̂22(x) + op

(
1

n

)
,

with

p̂11(x) = −p̂1(x);

p̂22(x) = −p̂2(x) + p̂1(x)p̂′1(x)− 1

2
xp̂1(x)2.

• Since κ̂r = κr +Op(
1√
n
), this implies

qZ∗n,α = qZn,α + Op

(
1

n

)
,
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we conclude that a simulation of bootstraped qZ∗n,α given data set {Xi}ni=1 automati-

cally approximate the true quantile qZn,α upto the order Op(
1
n).
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3.2 When σ2 is unknown.
• Define

Tn(X1, . . . , Xn) = Tn =
1√
n

n∑
i=1

(Xi − µ)

σ̂
;

σ̂2 =
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2
.

• Deriving the Edgeworth expansion for tn is much more involved than Zn. This is

because the form of Tn(X1, . . . , Xn) is a non-linear function of the original sample.

Theorem 8 For a sequence d-dimensional i.i.d. random vectorWi = (Wi,1,Wi,2, . . . ,Wi,d)
′

define Z = (Z1, Z2, . . . , Zd)
′ =
√
n(W̄ − β). Let Sn := Sn(Z) be a statistic such that

Sn
d→ N(0, 1) such as Tn. Define a sequence of approximating statistic Un := Un,r(Z),
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Un,r is r-th order polynomials in Z:

Un =

d∑
i=1

biZi + n−1/2
d∑

i1,i2=1

bi1i2Zi1Zi2 + . . .

+n−(r−1)
d∑

i1,i2,...,ir=1

bi1i2...irZi1 . . . Zir,

for some positive integer r and non-random coefficients bj’s. Assume that each com-

ponent of Wi has finite (j × r)-th moments. Then,

i) The j-th cumulant of the approximating statistic Un has the form

κj,n = n−(j−2)/2(kj,1 +
1

n
kj,2 +

1

n2
kj,3 + . . .),

where the coefficients kj,l depends only on the coefficients b′ms in Un, on the moments

of each component of Wi up to the (j × r)-th, and the value of kj,l does not depend on

r for l ≤ r + 2− j.
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iii) If Sn = Un + op(
1
n), Sn admits the following form of Edgeworth expansion:

P (Sn 5 x) = Φ(x) +
1√
n
q1(x)φ(x) +

1

n
q2(x)φ(x) + o(

1

n
),

uniformly in x, where

q1(x) = −(k1,2 +
1

6
k3,1(x

2 − 1));

q2(x) = −x
{

1

2
(k2,2 + k21,2) +

1

24
(k4,1 + 4k1,2k3,1)(x

2 − 3)

+
1

72
k23,1(x4 − 10x2 + 15)

}
.

• Define

Wi = (Xi, X
2
i )′ and W̄ =

1

n

n∑
i=1

Wi.

Without loss of generality, assume E[Wi] = β = (0, 1)′, i.e. E[Xi] = 0 and E[X2
i ] = 1.
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• Using

x√
1 + x

= x(1 + x)−1/2 = x

(
1− 1

2
x +

1

4
x2
)

+ O(x4),

as x→ 0, it is easy to check that

Tn =
√
nA(W̄ ) =

√
nX̄√√√√1 + n−1

n∑
i=1

(X2
i − 1)− X̄2

=
√
nX̄

1− 1

2n

n∑
i=1

(X2
i − 1) +

1

2
X̄2 +

3

8

{
1

n

n∑
i=1

(X2
i − 1)

}2
︸ ︷︷ ︸

=Un

+ Op(n
−3/2),
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and directly compute the cumulants of Un as

κ1,n = E[Un] = − 1

2
√
n
γ + O(n−3/2)

κ2,n = E[U 2n]− E[Un]2 = 1 +
1

4n
(7γ2 + 12) + O(n−2)

κ3,n = E[U 3n]− 3E[U 2n]E[Un] + 2(E[Un])3

= − 2√
n
γ + O(n−3/2)

κ4,n =
1

n
(12γ2 − 2κ + 6) + O(n−2),

where γ = E(X − µ)3/σ3 and κ = E(X − µ)4/σ4 − 3.

• Compare the expansions of cumulants in Theorem-i), and we get

k1,2 = −1

2
γ, k2,2 =

1

4
(7γ2 + 12), k3,1 = −2γ, k4,1 = 12γ2 − 2κ + 6,
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• By Theorem-ii), the exact forms in the Edgeworth Expansion of tn are given as as

q1(x) =
1

6
γ(2x2 + 1);

q2(x) = x

{
1

12
κ(x2 − 3)− 1

18
γ2(x4 + 2x2 − 3)− 1

4
(x2 + 3)

}
.

• One may also show that the Edgeworth Expansion of

P (T ∗n,b ≤ x) = Φ(x) +
1√
n
q̂1(x)φ(x) +

1

n
q̂2(x)φ(x) + op(

1

n
),

with

T ∗n,b =
1√
n

∑n
i=1(X

∗
i,b − X̄)

σ̂∗
, (σ∗)2 =

∑n
i=1(X

∗
i,b − X̄∗)
n

;

q̂1(x) =
1

6
γ̂(2x2 + 1);

q̂2(x) = x

{
1

12
κ̂(x2 − 3)− 1

18
γ̂2(x4 + 2x2 − 3)− 1

4
(x2 + 3)

}
.
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4 Higher order properties of the Wild bootstrap

under misspecification (Kline and Santos, 2012)
• Consider a linear regression model

yi = x′iβ0 + ui for i = 1, . . . , n.

with xi = (1, x̃′i)
′, (yi, x̃

′
i) = (yi, x̃i1, ..., x̃ik)

′ ∈ Rk+1 are i.i.d data and estimate β̂ =

[
∑n

i=1 xix
′
i]
−1

[
∑n

i=1 xiyi] .

• Basic Assumptions

i)E[xix
′
i] andE[u2ixix

′
i] are finite full rank (positive definite) matrices with β0 = [E[xix

′
i]]
−1E[xiyi].

ii) Eu4i <∞ and E ‖xi‖4 <∞.
• If Assumptions i)–ii) hold, for any non-zero c ∈ Rk, we have

Zn, Tn
d→ N(0, 1);

Zn : =

√
n(c′β̂ − c′β0)

σ
;

Tn : =

√
n(c′β̂ − c′β0)

σ̂
,
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where

σ2 = c′H−10 Σ0H
−1
0 c, H0 = E(xix

′
i), Σ0 = E[u2ixix

′
i];

σ̂2 = c′H−1n Σn(β̂)H−1n c , Hn =
1

n

n∑
i=1

xix
′
i, Σn(β̂) =

1

n

n∑
i=1

xix
′
i(yi − x′iβ̂)2.

• Note that the population regression coefficient β0 always satisfies

E[xiui] = E[xi(yi − x′iβ0)] = 0,

by construction.

• This does not necessarily imply

E[u|xi] = 0

unless E[y|xi = x] = x′β0 which implies there is no model misspecification for the

linear functional form of E[y|xi = x] = g(x).

• Note that although g(x) 6= x′iβ0, the linear regression function x′β0 can be still mean-

ingful target in the sense that it becomes best (MSE minimizing) linear approxima-

tion of g(x). For details, see the seminar papers "Using least square to approximate
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unknown regression functions (1980) " and "Maximum likelihood estimation of mis-

specified. models (1982)" by H. White.

• Kline and Santos (2012, JOE) focuses on the approximating nature of linear regres-

sion function and connects it to the asymptotic refinement of bootstrap inference. To

see this, we begin with finding Edgeworth expansions of the sample statistic Tn under

both correct specification and misspecification. We refine the previous assumptions

as below

ii)’ E[‖xix′i‖
v] <∞ and E[||u2ixix′i||v] <∞ for some v ≥ 9.

iii) For wi := (x̃′i, x
′
iui,vech(xix

′
i)
′, vech(xix

′
iu
2
i ))
′, the characteristic function of wi sat-

isfies lim sup|t|→∞ |ϕw(t)| < 1.

• Further define

γ0 = E[(c′H−10 xi)
2xiui] and γ1 = E[(c′H−10 xi)(x

′
iH
−1
0 xi)ui]

λ = E[( c′H−10 xi)
3u3i ].

Theorem 9 Under Assumptions i), ii)’, and iii), the following Edgeworth approximations

of Tn hold uniformly in z ∈ R.
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i) If the linear regression is correctly specified with E[ui|xi] = 0,

P (Tn ≤ z) = Φ(z) +
1√
n
p11(z)φ(z) + o

(
1√
n

)
;

p11(z) = − λ

6σ3
(2z2 + 1).

ii) If the linear regression is misspecified. withE[ui|xi] 6= 0, and only satisfyingE[xiui] =
0,

P (Tn ≤ z) = Φ(z) +
1√
n

(p11(z) + p12(z)φ(z)) + o

(
1√
n

)
;

p12(z) =
λ

σ3
(c′H−10 Σ0H

−1
0 γ0(z

2 + 1)− γ1σ2).

• The result of Theorem shows that there exists an extra O(n−1/2) term in the Edge-

worth expansion of Tn when the conditional mean function is misspecified.

• Thus, higher-order refinement of bootstraped inference depends on how the boot-

strap procedure mimics the misspecified. nature of population.

• Let us first consider the non-parametric i.i.d boostrap procedure. Bootstrap a b-th
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sample {(y∗i,b, x̃
∗′
i,b)}ni=1 and compute b-th boostrap OLS estimator

β̂
∗
b =

[
n∑
i=1

x∗i,bx
∗′
i,b

]−1 [ n∑
i=1

x∗i,by
∗
i,b

]
.

By construction, each Bootstrap sample satisfies

y∗i,b = x∗′i,bβ̂ + u∗i,b for i = 1, . . . , n.

E∗[x∗i,bu
∗
i,b] = E∗[x∗i,by

∗
i,b]− E∗[x∗i,bx∗′i,bβ̂]

= n−1
n∑
i=1

xiyi − n−1
n∑
i=1

xix
′
iβ̂

= 0.

but not necessarily

E∗[u∗i |x∗i,b] = 0

because it can be

E∗[y∗i,b|x∗i,b] 6= x∗′i,bβ̂
∗
b .
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Hall and Horowitz (1996) proves the asymptotic refinement of non-parametric i.i.d

bootstrap in the context of the moment condition model E[xi(yi − x′iβ)] = 0

• Let us consider the second boostrap procedure, so called "wild"-bootstrap proposed

by Wu (1986) and Liu (1988). The "wildness" feature of this bootstrap procedure

is because it keeps the regressor {x̃i}ni=1, and only generates the b-th Bootstraped

errors and dependent variables as below:

y∗i,b = x′iβ̂ + û∗i,b, with û∗i,b = ûiVi,b,

where Vb := {Vi,b}ni=1 is an i.i.d sample independent (over i and b) of original data

(yi, x̃
′
i)
′ such that E[Vi,b] = 0 and E[V 2i,b] = 1. Then, the corresponding Bootstrap OLS

estimator is

β̂
∗
b =

[
n∑
i=1

xix
′
i

]−1 [ n∑
i=1

xiy
∗
i,b

]
.
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• It is easy to check

E∗[y∗i,b|xi] = x′iβ̂ + E∗[û∗i,b|xi]
= x′iβ̂ + E∗[Vi,b]E[ûi|xi]
= 0.

Thus, the wild Bootstrap approximation of F̂ and corresponding conditional expecta-

tion treats x′iβ̂ to be a true specification of E∗[y∗i,b|xi] = 0. This is very nice when the

population model of E[yi|xi] is correctly specified with x′iβ , and the asymptotic re-

finement is proved in Mammen (1993) and Djogbenou, MacKinnon, Nielsen (2019).

• Define the wild bootstrap statistic T ∗n as

T ∗n,b =

√
n(c′β̂

∗
b − c′β̂)

σ̂∗b
;

(σ̂∗b)
2 = c′H−1n Σn(β̂

∗
b)H

−1
n c.

Theorem 10 Assume Assumptions i), ii)’, and iii), and E[Vi,b] = 0, E[V 2i,b] = 1, and

E[|Vi,b|v] < ∞ for v ≥ 9. For Ui,b = (Wi,b,W
2
i,b)
′, its characteristic function satisfies



Note on Edgeworth Expansions and Asymptotic Refinements of Percentile t-Bootstrap Methods 52

lim sup|t|→∞ |ϕu(t)| < 1. Then,

P (T ∗n,b ≤ z) = Φ(z) +
1√
n
p̂11(z)φ(z) + op

(
1√
n

)
;

p̂11(z) = − λ̂

6σ̂3
(2z2 + 1).
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5 Review of Efron (1979)’s i.i.d Bootstrap
We begin by reviewing the formulation of the i.i.d bootstrap method of Efron (1979).

• Assume that X1, X2, . . . , is a sequence of i.i.d random variable with common distrib-

ution F.

• Suppose Xn = {X1,X2, . . . , Xn} is the data at hand.

• Let Tn = tn(Xn, F ) be a random variable of interest. We again consider the simplest

example where Tn =
√
n(X̄n − µ)/σ with one parameter of interests µ = E[X1].

• The bootstrap version T ∗n of Tn based on bootstrap sample X ∗n = {X∗1 , X∗2 , . . . , X∗n}
with replacement from Xn is

T ∗n =

√
n(X̄∗n − E∗[X∗1 ])

(V ar∗[X∗1 ])1/2
=

√
n(X̄∗n − X̄n)

sn

where X̄∗n = 1
n

∑n
i=1X

∗
i and s2n = 1

n

∑n
i=1(Xi − X̄n)2.

•When E[X2
1 ] <∞, then the bootstrapped-quantile q∗α is a “consistent” approximation

of the true quantile qα.
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Theorem 11 (Berry-Essen) Let W1,W2, . . . ,Wn be a collection of n independent (but

not necessarily identically distributed) random variables with EWj = 0 and EWj < ∞
for all 1 ≤ j ≤ n. If σ2n = n−1

∑n
j=1EW

2
j > 0, then

sup
x∈R

∣∣∣∣∣∣P
 1√

nσn

n∑
j=1

Wj ≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ (2.75)
1

n2/3

n∑
j=1

(E|Wj|3/σ3n),

where Φ(x) denotes the distribution function of the standard normal distribution on R.

• The non-asynmptotic bound holds for any random variable Wj with arbitary probabil-

ity measure.

Theorem 12 IfX1, X2, . . . are i.i.d with σ2 = V ar(X1) ∈ (0,∞), then supx∈R |P ∗(T ∗n ≤ x)− Φ(x)| =
o(1) as n→∞ a.s.

sup
x∈R
|P ∗(T ∗n ≤ x)− Φ(x)| = o(1) as n→∞ a.s.
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Since X∗1 , X
∗
2 , . . . , X

∗
n are i.i.d, by Theorem 11,

sup
x∈R
|P ∗(T ∗n ≤ x)− Φ(x)| ≤ (2.75)∆̂n,

where ∆̂n = E∗|X∗1 − X̄n|3/(s3n
√
n) and s2n = E∗(X∗1 − X̄n)2. By the SLLN, it is easy to

check that ∆̂n = o(1) as n→∞.
• Arcones and Giné (1989, 1991) proves that Theorem 12 holds for any resample size

mn →∞ (instead of n) at a rate faster than log log n.

• Note that by the (CLT), Tn also converges in distribution to N(0, 1). Hence it follows

that

sup
x∈R
|P ∗(T ∗n ≤ x)− P (Tn ≤ x)| = o(1) as n→∞ a.s.
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6 Inadequacy of i.i.d Bootstrap for Dependent Data
•We point out that the general perception that the bootstrap is an "omnibus" method,

giving accurate perception in all problems automatically, is misleading.

• A prime example of this appears in Singh (1981).

Definition 3 {Xn}n≥1 is called m-dependent for some integer m ≥ 0 if {X1, . . . , Xk}
and {Xk+m+1, . . . , } are independent for all k ≥ 1.

Example 1 An i.i.d sequence of random variables {εn}n≥1 is 0-dependent.

Example 2 Xn = εn + 0.5εn+1 is 1-dependent.

• Let σ2m=Var(X1) + 2
∑m−1

i=1 cov(X1, X1+i) and X̄n = n−1
∑n

i=1Xi. If σ2m∈ (0,∞), then

the following CLT for m-dependent r.v. holds

√
n(X̄n − µ)

d→ N(0, σ2m).

• Suppose we want to estimate the sampling distribution of Tn :=
√
n(X̄n − µ) using
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the i.i.d bootstrap. Note that the true (asymptotic) distribution of Tn depends on σ2m.
The bootstrap version of T ∗n of Tn is given by

T ∗n :=
√
n(X̄∗n − X̄n),

where X̄∗n = n−1
∑n

i=1X
∗
i .

• Conditioning on the original sample X ∗n , the distribution of T ∗n still converges to a

normal distribution, but with a “wrong” variance as shown below.

Theorem 13 Suppose {Xn}n≥1 is a sequence of stationary m-dependent random vari-

ables with EX1 = µ and σ2 = var(X1) ∈ (0,∞). Then,

sup
x
|P ∗(T ∗n ≤ x)− Φ(

x

σ
)| = o(1) as n→∞ a.s.

Proof. Note that conditional on X ∗n , X∗1 , X∗2 , . . . , X∗n are i.i.d random variables. As in

the proof of Theorem 12, by the Berry-Essen Theorem, we get the result of Theorem
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because

s2n = E∗(X∗1 − X̄n)2 =
1

n

n∑
i=1

(Xi − X̄n)2 → σ2 as n→∞ a.s.

and

1

n3/2

n∑
i=1

|Xi|3 → 0 as n→∞ a.s.

hold by SLLN for m-dependent random variables.

Corollary Under the condition of the above theorem, if
∑m−1

i=1 cov(X1, X1+i) 6= 0 and

σ2∞, then for any x 6= 0,

lim
n→∞
|P ∗(T ∗n ≤ x)− P (Tn ≤ x)| = |Φ(

x

σm
)− Φ(

x

σ
)| 6= 0 a.s.

• Thus, for all x 6= 0, the i.i.d bootstrap estimator P ∗(T ∗n ≤ x) of P (Tn ≤ x) has a non-

zero error in the limit, and thus the bootstrap critical value q̂α is no-longer a consistent

estimator for qα.

• The i.i.d bootstrap method drastically fails for dependent data. This is because it
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ignores the dependent structure of the sequence {Xn} completely.
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7 Bootstrap Methods for Dependent Data

7.1 Bootstrap Based on I.I.D Innovations
• Suppose {Xn} is a sequence of random variables satisfying the following AR(p)

process:

Xn = β1Xn−1 + . . . + βpXn−p + εn for n > p, (12)

where β = (β1, β2, . . . , βp)
′ is the vector of the autoregressive parameters, and

{εn}n>p is an i.i.d sequence of random variables with common distribution F that

are independent of the random variable X1, . . . , Xp. Assume E(ε1) = 0

• Let β̂n be an OLS estimator of β based on Xn. Suppose we want to approximate the

sampling distribution of random variables Tn = tn(Xn, F, β), e.g. Tn =
√
n(β̂ − β).

Define the residuals ε̂i = Xi − β̂1Xn−1 − . . . + β̂pXn−p, p < i ≤ n.

• Draw a simple random sample of size n, ε∗p+1, ε
∗
p+2, . . . , ε

∗
n from {ε̂i}np+1 with replace-
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ment and define the bootstrap peudo-observations using the model structure in (12)

X∗i = Xi for i = 1, . . . , p, and

X∗i = β̂1X
∗
i−1 + . . . + β̂pX

∗
i−p + ε̂i for p < i ≤ n.

• By construction, ε∗i are i.i.d and E∗ε∗i = 0. The bootstrap version of the random

variables is defined as T ∗n = tn(X ∗n , F̂n, β̂) where Fn denotes the empirical distribution

of ε̂i.

•When {Xn} is stationary, Bose (1988) shows that under suitable regularity condi-

tions, T ∗n provides a more accurate approximation than the normal distribution.

• However, there is a series of work that the i.i.d-innovation bootstrap is very sensitive

to the values of the AR-parameters. If β is such that the roots of the characteristic

equations zp + β1z
p−1 + . . . + βp = 0 (closely) lie on the unit circle, then the i.i.d

bootstrap fails.

7.2 Moving Block Bootstrap
• Künsch (1989) and Liu and Singh (1992) independently formulated a resampling

scheme moving block bootstrap (MBB).
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• It is applicable to dependent data without any parametric model assumptions.

• In contrast to a resampling a single observations, the MBB resamples blocks of (con-

secutive) observations at a time to preserve the dependent structure of the original

data.

Definition 4 A sequence of random vectors {Xi}i∈Z is called stationary if for every i1 <
i2 < . . . < ik, k ∈ N, and for every m ∈ Z, the (joint) distributions of (Xi1, . . . , Xik)

′ and

(Xi1+m, . . . , Xik+m)′ are the same.

• LetX1, X2, be a sequence of stationary random variables, and letXn = {X1,X2, . . . , Xn}
be the data at hand.

• Suppose l := ln ∈ [1, n] is an integer. We typically require that

l→∞ and
l

n
→ 0 as n→∞.

• Let Bi = (Xi, . . . , Xi+l−1) denote the block of length l starting with Xi, 1 ≤ i ≤ N
where N = n− l + 1.

• Let b denotes the smallest integer such that bl ≥ n. To obtain the MBB samples,

we randomly select a b number of blocks from the collection {B1,B2, . . . ,BN} with
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replacement. Let B∗1, . . . ,B∗b be the resampled block and B∗i = (X∗(i−1)l+1, . . . , X
∗
il)

for i = 1, . . . , b. Then, X∗1 , . . . , X
∗
n be the first n values of the resampled blocks

B∗1, . . . ,B∗b .
• The MBB version θ∗n of θ̂n = T (Fn) is defined as

θ∗n = T (F ∗n),

where F ∗n denotes the (joint) empirical distribution of X∗1 , . . . , X
∗
n. For example, θ̂n =

n−1
∑n

i=1Xi and θ∗n = n−1
∑n

i=1X
∗
i .

7.3 Nonoverlapping Block Bootstrap (NBB)
• Define blocks

Bi = (X(i−1)l+1, . . . , Xil)
′ for i = 1, . . . , b,

where b is the largest integer satisfying lb ≤ n.

• The blocks in the MBB overlap, but the blocks in NBB do not. As a result, the collec-

tion of blocks from which the bootstrap blocks are selected {B1,B2, . . . ,Bb} is smaller

than that of NBB.
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• The next step in implementing the NBB is exactly the same as for the MBB. Select a

simple random sample of blocks B∗1,B∗2, . . . ,B∗b from {B1,B2, . . . ,Bb}, and obtain the

bootstrap version of the estimator θ∗n = T (F ∗n), say, θ∗n = m−1
∑m

i=1X
∗
i with m = bl.

• Note that under the NBB, the block variables B∗1,B∗2, . . . ,B∗b are i.i.d with common

distribution

P (B∗1 = (X(j−1)l+1, . . . , Xjl)
′) = P ((X∗1 , . . . , X

∗
l )′ = (X(j−1)l+1, . . . , Xjl)

′) = 1/b

for j = 1, . . . , b. Hence,

E∗(θ∗n) = E∗

[
m−1

m∑
i=1

X∗i

]
= E∗

[
(bl)−1

bl∑
i=1

X∗i

]

= E∗

[
l−1

l∑
i=1

X∗i

]
=

1

bl

b∑
j=1

l∑
i=1

X(j−1)l+i

=
n

bl
X̄ −

n∑
i=lb+1

Xi,

which is equal to X̄ when n = bl.
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•We now check the bootstrap principle of NBB in an attempt to recreate the relation

between population and the sample. For simplicity let n = bl. Because of the sta-

tionarity, each block Bi for i = 1, . . . , b has the same (identical) l-dimesional joint

distribution Pl.

• Also, from the weak dependence of the original sample {Xn}n≥1, these blocks are

approximately independent random vectors with common distribution Pl. Thus, we

may have the following approximation of Pn ≈ P b
l := Pl⊗· · ·⊗Pl,where Pn = Fn is the

underlying true population of Xn.Let P̃l be the empirical distribution of B1,B2, . . . ,Bb.
Then, the joint distribution of the bootstrap observations {X∗i }ni=1 is given P̃ b

l := P̃l ⊗
· · · ⊗ P̃l.
• For the random quantity θn := T (Xn, Fn) with Fn = Pn is the underlying true popula-

tion of Xn,

Pn(T (Xn, Pn) ≤ x) ≈ P b
l (T (Xn, P b

l ) ≤ x)

≈ P̃ b
l (T (X ∗n , P̃ b

l ) ≤ x)

= P ∗n(T (Xn, F ∗n) ≤ x).
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