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1 Introduction

In economic theory, we often try to conclude a long run structural relationship among economic
variables over long periods of time. When economic time series possess an exact unit root, the
structural relationships between the non-stationary I(1) variables are captured by the concept of
cointegration in Engle and Granger (1987). In most macroeconomic applications, however, it is
arguable that fundamental economic variables follow the exact unit root process, e.g., Christiano
and Eichenbaum (1990). Modeling key variables in the cointegration system using the unit roots
assumption usually come in practice through a failure to reject the unit root hypothesis with a
limited span of time series data (Elliott, 1998). Thus, the assumption of unit root in the cointe-
gration model may simply represent a lack of knowledge about the economic interactions behind
the common stochastic trends. See, for more details, Christiano and Eichenbaum (1990), Elliott
(1998), and Müller and Watson (2008, 2013).

In the time series literature, it has been well established that several problems arise from the
standard OLS procedure when the cointegration system has non-exact unit root regressors. First,
the non-stationary cointegration regressors are endogenously correlated with cointegration errors.
This results in a lack of mixed normality along with an unknown nuisance parameter (Park and
Phillips, 1988; Phillips and Hansen, 1990). Secondly, a local-to-unity autoregressive specification
for the non-unit regressor induces an uncorrectable bias in the limiting distribution, which are
functions of several unknown nuisance parameters (Cavanagh et al., 1995; Elliott, 1998).

There are many studies that intend to solve these problems and search for robust inference
methods. Cavanagh et al. (1995) introduce a pretest for identifying conditions under which the
conventional t-test is invalid and propose a Bonferroni method as a possible solution. Campbell and
Yogo (2006) further utilize the idea of the Bonferroni method by employing the fully augmented
OLS (FM-OLS) approach as in Phillips and Hansen (1990). Alternatively, Jansson and Moreira
(2006) suggest a conditional likelihood test that uses sufficient statistics in a Gaussian bivariate
regression model with a persistent regressor. Elliott (2011) proposes a control function approach
to help stabilize the non-standard limits. Phillips and Magdalinos (2009), Kostakis et al. (2015),
and Phillips and Lee (2016) have developed an instrumental variable procedure, called IVX, in
cointegrating regression framework.

The methods mentioned above require a consistent estimation of the long run variance of errors
in the cointegration system. In time series data with an unknown form of serial dependence, it is
well known that the estimation of the long run variance is exposed to severe finite-sample noises.
As a result, inferences can have a large size distortion in finite-samples, e.g., Kiefer and Vogelsang
(2005), Müller (2007), and Sun et al. (2008).

In this paper, we develop robust t and F inferences on the triangular cointegrated regression
using a low-frequency transformation approach. To keep it general, we allow the short-run dynamics
in the cointegrated system to have serial dependence of unknown forms. By transforming time
series from the original time domain, the analysis is carried out the domain of frequencies, such
as short-run or long run business cycles. Compared to the existing time-domain approaches, the
low-frequency framework enables us to automate the estimation of long run variance parameters in
the cointegrating regression.

Following Hwang and Sun (2017), we transform the original non-stationary time series data
and its first differences using a K number of low-frequency basis functions. With the K number of
low-frequency observations, we run a transformed and augmented ordinary least square (TA-OLS)
in cointegrated regression. The triangular cointegrated system is characterized by I(1) regressors
in Hwang and Sun (2017), which are endogenous within the structural relation. To account for the
order of integration, this paper adopts a local-to-unity approximation of cointegration regressors
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in the TA-OLS framework. Instead of maintaining a strict dichotomy between integrated and non-
integrated regressors, the assumption of the local-to-unity, e.g., Bobkski (1983) and Phillips (1987),
allows for a smoother transition between two processes and thus can provide a more reasonable
approximation to the TA-OLS methods, especially when the length of the time series is small.

We first derive the fixed-K limiting distributions of TA-OLS and show that the TA-OLS is
still super consistent and share a common mixture of the normal distribution. However, due to
the local-to-unity regressor, the limits of the TA-OLS estimator have an asymptotic bias term.
The asymptotic bias is a product of two important characteristics in our cointegration model: the
deviation from the exact unit root and the degree of long run endogeneity within the cointegration
system. It is analytically shown that the limiting distributions of TA-OLS statistics are mixtures
of non-central t and F distributions where the random non-centrality parameter depends on the
asymptotic bias from the local-to-unity regressors. As a result, the standard t and F approxima-
tions in Hwang and Sun (2017) are no longer valid asymptotically. This result is consistent with
Elliott (1998) whose approximation of the cointegration model is based on the time-domain. Our
numerical results also show that the empirical size distortion of the TA-OLS method to test the
cointegration vector can be large for even very small deviations from a unit root regressor. On
the other hand, we find that the TA-OLS estimator of the long run endogeneity coefficient in the
augmented cointegrated system is still asymptotically centered toward its true value.

To make a valid inference for the cointegration vector, we provide modified TA-OLS statistics
that correct the asymptotic bias. The modified statistics not only adjust the locational bias but
also correct the estimation uncertainty of the long run endogeneity parameter in the bias correction
term. After we fully account for both effects on the plugged-in bias correction formula, we show
that the modified statistics have the standard t and F limits.

The modified test statistics require the knowledge of the local-to-unity parameter which is
not consistently estimable in general. However, there are several ways developed in the time
series literature to measure the uncertainty of the local-to-unity parameter in the context of unit
root testing problem. See, for example, Stock (1991), Andrews (1993), Elliott and Stock (2001),
Mikusheva (2007), and Andrews and Guggenberger (2014) for constructing a confidence interval
of the unknown local-to-unity parameter. All these methods, however, except Elliott and Stock
(2001), require the autoregressive error to be i.i.d. or martingale difference sequence (m.d.s.), which
are limited to be applied in our general cointegration setting. Therefore, we implement Elliott and
Stock’s (2001) approach which allows the unknown form of serial correlation by inverting a sequence
of optimal tests in Gaussian autoregressions.

One concern with Elliott and Stock’s (2001) CI is that it is subject to the uniformity critique in
Phillips (2014b) when the true local-to-unity parameter largely deviates from zero. On the other
hand, the parametric and nonparametric grid-bootstrap methods, which are proposed by Andrews
(1993) and Hansen (1999), respectively, do not suffer this drawback (Mikusheva, 2007; Phillips,
2014b). However, the CIs of Andrews (1993) and Hansen (1999) are in danger of poor coverage
probabilities when we ignore the serial dependence of the autoregressive error. Thus, we propose a
modification of Hansen’s (2001) confidence interval, which approximates the unknown dependence
structure by a finite-order autoregressive process. Our modification of Hansen (1999) applies the
grid-bootstrap method to an (approximated) augmented Dickey-Fuller form with reparametrized
autoregressive coefficients. This allows us to overcome the uniformity critique on Elliott and Stock
(2001) and construct a CI which is robust to an unknown form of serial dependence.

Using the confidence intervals of the local-to-unity parameter, we develop Bonferroni-based
inferences to the modified TA-OLS. By Bonferroni’s inequality, our confidence intervals for the
cointegration parameter yields asymptotically correct inferences with at least nominal size. The
idea of the Bonferroni confidence interval has been widely used in various contexts in statistics
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and econometrics. See, for example, Cavanagh et al. (1995), Campbell and Yogo (2006), and
McCloskey (2017). Recent work by Franchi and Johansen (2017) and Duffy and Simons (2020) also
use Bonferroni adjustments when performing inference on cointegrating parameters. Both papers
impose parametric vector autoregressive (VAR) structures in the time domain to accommodate
dependent cointegration errors. In contrast, our Bonferroni-based inference in frequency domain
deals with unknown forms of distribution and dependence structure for cointegration errors, which
relates to the literature in the semiparametric estimation of the cointegration system, e.g., Phillips
and Hansen (1990), Phillips (1991a&b), and Saikkonen (1991).

Our Monte Carlo results show that the unmodified TA-OLS methods suffer from severe size dis-
tortions under the local-to-unity regressor, especially when the long-run endogeneity increases. We
further show that the infeasible modified TA-OLS statistic, using the true local-to-unity parameter,
successfully controls the size distortions. The feasible versions of the modified TA-OLS, using the
Bonferroni-based inferences, have asymptotically correct sizes but are mildly undersized for most
of the DGPs we consider. We also show that the use of Hansen’s (2001) confidence interval, which
ignores dependence structure, in Bonferroni-based inference can drive severe size distortions for
testing cointegrating parameters.

In our simulations, we also compare our modified TA-OLS with the IVX test (Phillips and
Magdalinos, 2009), which is known to be also robust in the presence of the local-to-unity regressor
and serial dependence. We show that the IVX can be size-distorted in finite-samples as the serial
dependence of errors increases. This is because the normal critical value in the IVX test statistics
does not consider the estimation uncertainty from the nonparametric estimators of the long run
variance. The size distortions of the IVX are amplified when the local-to-unity parameter and
the degree of long run endogeneity increase. We also find that the IVX test can work the best
when there is a low serial correlation in the errors, and the cointegration regressor is not too much
deviated from the unit root.

Our paper contributes to recent literature in low-frequency econometrics (Müller and Watson;
2008, 2017). In the context of the cointegrated time series, Phillips (1991) estimates the cointe-
gration parameter using frequency domain techniques, and Bierens (1997) proposes nonparametric
tests for the number of cointegrations using a transformed time series. More recently, Phillips
(2014a) develops an optimal estimation of cointegration using trend instrumental variables, and
Müller and Watson (2013) use the Neyman-Pearson decision-theoretic framework to design robust
and nearly optimal tests about the cointegration vectors using a fixed number of transformed data.
The approach has also been used in the recent heteroskedasticity and autocorrelation robust in-
ference (HAR) literature for time series models, e.g., Phillips (2005), Müller (2007), and Sun et
al. (2008). See also Lazarus et al. (2018) for practical recommendations for HAR inference. In
this paper, we develop new t and F inferences which are robust on the triangular cointegrated
regression when the economic variables are not exact unit root processes and exhibit unknown
form of serial dependence and long run endogeneity. In recent independent work, Sun (2020) also
recovers the asymptotic t and F tests of (infeasible) TA-OLS under the local to unity regressor.
While Sun (2020) uses a transformed quasi-differenced process of the TA regression, our approach
recovers the standard t and F limits by correcting the asymptotic bias of the TA-OLS estimator
using the estimated long-run endogeneity coefficient. This way of treating the asymptotic bias of
cointegrating regression is similar in spirit to the popular Campbell and Yogo’s (2006) Q-test in
the predictive regression.

The rest of the paper is organized as follows. Section 2 introduces an idea of low-frequency
transformed regression analysis of cointegration and the fixed-K asymptotics limits of the TA-OLS
estimator and the corresponding t and F tests. Section 3 extends the low-frequency transformed
cointegration system in the presence of a local-to-unity regressor. The next sections provide a
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method to correct the asymptotic bias of TA-OLS test statistics and suggest feasible Bonferroni-
based inferences. Section 6 presents simulation evidence. The last section concludes. Supplemental
Appendix provides proofs of the main results, discussions on non-linear and joint testings using
the modified TA-OLS, detailed procedures for calculating the confidence sets of the local to unity
parameter, and tables and figures referenced in the paper.

2 Low-Frequency Transformation of the Cointegrated System

We start by illustrating the idea of the low-frequency analysis of the triangular cointegration sys-
tem.1 We consider the following data generating process:

yt = α0 + x′tβ0 + u0t (1)

xt = xt−1 + uxt for t = 1, . . . , T, (2)

where yt is a scalar time series, and xt is a d × 1 vector of I(1) time series with a stationary
innovation uxt such that x0 = Op (1) . We assume that there exists a cointegrating relation between
(yt, x

′
t) with cointegrating vector (1, β′0)′ ∈ Rd+1, which is the focus of interest in this paper. To

keep it general, we allow the I(0) errors ut ≡ (u0t, u
′
xt)
′ ∈ Rd+1 to be weakly stationary with serial

dependence of unknown forms. Let Ω =
∑∞

j=−∞Eutu
′
t−j denote long run variance (LRV) matrix

of ut. We partition Ω conformably with ut = (u0t, u
′
xt)
′ as

Ω
(d+1)×(d+1)

=

 σ2
0

1×1
σ0x
1×d

σx0
d×1

Ωxx
d×d

 .

Throughout the paper, we assume that Ωxx is positive definite, and hence xt is a full-rank integrated
process. Then, we can rewrite the cointegrated regression equation in (1) in the following augmented
form:

yt = α0 + x′tβ0 + δ′0∆xt + u0·xt for t = 1, ..., T, (3)

where δ0 = Ω−1
xxσx0, ∆xt = xt − xt−1, and u0·xt = u0t − δ′0uxt is a long run projection of u0t onto

uxt. Our low-frequency analysis begins with transforming (3) to the following transformed and
augmented (TA) regression:

Wy,i = W′x,iβ0 + W′∆x,iδ0 + W0·x,i for i = 1, ...,K, (4)

where {Wy,i,W′x,i,W′∆x,i}Ki=1 is a set of transformed data which is defined as

Wy,i =
1√
T

T∑
t=1

ytφi

(
t

T

)
, Wx,i =

1√
T

T∑
t=1

xtφi

(
t

T

)
, W∆x,i=

1√
T

T∑
t=1

∆xtφi

(
t

T

)
, (5)

and similarly, we define W0·x,i := T−1//2
∑T

t=1 φi(t/T )u0·xt.
2 The transformation projects {yt, x′t,∆x′t}Tt=1

onto a space spanned by K number of orthonormal basis functions, {φi(·)}Ki=1, which can concen-
trate on the low-frequency components of the original time series data. Examples of the orthonormal

1Readers are also referred to Müller and Watson (2017) which overview applications of the low-frequency analysis
in other econometrics models.

2The intercept terms, α0, transforms to zero because T−1 ∑T
t=1 φi(t/T ) = 0 for i = 1, . . . ,K.
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basis functions include Fourier basis functions considered in Sun (2013, 2014):{
φ2j−1

(
t

T

)
=
√

2 cos

(
2jπt

T

)
, φ2j =

√
2 sin

(
2jπt

T

)
, j = 1, . . . ,K/2

}
, (6)

and cosine basis functions in Müller and Watson (2008, 2013):{
φj

(
t

T

)
=
√

2 cos

(
jπ(t− 1/2)

T

)
, j = 1, . . . ,K

}
. (7)

The TA regression in (4) has substantive empirical content in the context of the original cointegra-
tion system in (1) and (2), which seeks a long-run relationship among economic time series. This is
because the transformed data in (5) can effectively capture the long-run behaviors of the original
time series (Müller and Watson, 2017). To be more specific, let

Φi = [φi(1/T ), . . . , φi((T − 1) /T ), φi(1)]′ ∈ RT

denote a basis vector corresponding to the basis functions in (6) and (7), and Φ = [lT ,Φ1, . . . ,ΦK ] ∈
RT×(K+1) denote a matrix of K basis vectors including the column of ones lT = (1, ..., 1)′ ∈ RT .
Because both (6) and (7) satisfy T−1

∑T
t=1 φi(t/T )φj(t/T ) = 1(i = j) and T−1

∑T
t=1 φi(t/T ) = 0,

i.e., Φ′Φ = T · IK+1, the (scaled) low-frequency transformed data are equal to components of the
following OLS regression coefficient:

(Φ′Φ)−1Φ′X =
Φ′X

T
=
(
x̄T , W̆′x,1, . . . , W̆′x,K

)′
,

where X = (x1, . . . , xT )′, x̄T = T−1
∑T

j=1 xt, and W̆x,i = Wx,i/
√
T . Then, the low-frequency

movement of the time series can be formulated by the low frequency transformed data multiplied
by the non-stochastic trend predictor Φ, i.e.,

xt = x̄T + φ1

(
t

T

)
W̆x,1 + . . .+ φK

(
t

T

)
W̆x,K︸ ︷︷ ︸

low-frequency components

+ ũxt. (8)

The low-frequency component in (8) captures the long run fluctuation of the original data with
periodicity longer than 2T/j for j = 1, ...,K years of cycles. A useful rule of thumb introduced
in Müller (2014) and Müller and Watson (2017) suggest a choice of K = 16 to capture the low-
frequency movements of T = 65 years of Post World War II macro data with periodicity higher
than the commonly accepted business cycle period of T/ (K/2) ' 8 years.

To investigate the asymptotic properties of the TA regression system, we assume the following
functional central limit theorem (FCLT) for {ut} :

1√
T

[T ·]∑
t=1

ut ⇒ B(·) := Ω1/2W (·) =

(
σ0·xw0(·) + σ0xΩ

−1/2
xx Wx(·)

Ω
1/2
xx Wx(·)

)
, (9)

where W (·) := (w0(·),W ′x(·))′ is an d + 1-dimensional standard Brownian process, σ2
0·x = σ2

0 −
σ0xΩ−1

xxσx0, and Ω1/2 is a Cholesky decomposition of the LRV Ω. Primitive conditions to hold the
FCLT assumption can be found in Phillips and Durlauf (1986) and Davidson (1994). With (9), we
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can use summation by parts, continuous mapping theorem, and integration by parts to get

W∆x,i ⇒ Ω1/2
xx

∫ 1

0
φi (r) dWx(r)

d
= N(0,Ωxx), (10)

W0·x,i ⇒ σ0·x

∫ 1

0
φi (r) dw0(r)

d
= N(0, σ2

0·x) (11)

for i = 1, ...,K. Also, invoking the continuous mapping theorem together with (9), we have that

Wx,i

T
=

1

T 3/2

T∑
s=1

φi

( s
T

)
xs ⇒ Ω1/2

xx

∫ 1

0
φi (r)Wx(r)dr

d
= N(0,Ω1/2

xx ΣΩ1/2
xx ), (12)

where Σ =
∫ 1

0

∫ 1
0 φi(r)φi(s) min(r, s)drds · Id, for i = 1, ...,K. Since the weak convergences in (10)–

(12) hold jointly, the TA regression in (4) naturally connects to the following small sample Gaussian
linear regression model:

Wy,i ' S′x,iβT,0 + S′∆x,iδ0 + S0·x,i for i = 1, ...,K, (13)

where βT,0 = Tβ0, S∆x,i, S0·x,i, and Sx,i are the Gaussian weak convergence limits of W∆x,i,
W0·x,i, and Wx,i/T, respectively, which are specified in (10), (11), and (12), respectively. Note
that {Sx,i,S∆x,i}Ki=1 and {S0·x,i}Ki=1 are independent, because they are functionals of Wx(·) and
w0(·), respectively, which are independent stochastic processes. Also, the orthonormal property
of the basis functions {φi(·)}Ki=1 ensures the errors of regression {S0·x,i}Ki=1 are i.i.d. normal with
zero mean and variance σ2

0·x. Therefore, standard OLS framework of the sample Gaussian linear
regression model can be applied to estimate the parameters βT,0 and δ0.

Hwang and Sun (2017, HS hereafter) runs the OLS estimator for γ0 = (β′0, δ
′
0)′ based on (4)

and defines TA-OLS estimator of γ0 as

γ̂ = (β̂′, δ̂′)′ = (W′XWX)−1W′XWy,

where WX = (Wx,W∆x), Wx = (Wx,1, . . . ,Wx,K)′, and W∆x = (W∆x,1, . . . ,W∆x,K)′. HS shows

β̂
A∼ N

[
β0, σ

2
0·x(W′xM∆xWx)−1

]
, (14)

and
δ̂
A∼ N

[
δ0, σ

2
0·x(W′∆xMxW∆x)−1

]
, (15)

whereM∆x = IK−W∆x (W′∆xW∆x)−1 W′∆x andMx = IK−Wx (W′xWx)−1 W′x. To test a hypothesis
of

Hβ
0 : Rββ0 = rβ vs. H1 : Rββ0 6= rβ, (16)

where Rβ is a pβ × d matrix, HS constructs the following (unmodified) Wald statistic and derives
its limiting distribution by

F (β̂) =
1

σ̂2
0·x

(Rββ̂ − rβ)′
[
Rβ(W′xM∆xWx)−1R′β

]−1
(Rββ̂ − rβ)/pβ (17)

⇒ K

K − 2d
· Fpβ ,K−2d,

where Fpβ ,K−2d is the F distribution with degrees of freedom pβ and K − 2d. When p = 1, the
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t-statistic can be constructed in a similar manner. Here, σ̂2
0·x = K−1

∑K
i=1 Ŵ2

0·x,i is a natural

variance estimate of the regression error, where Ŵ0·x,i = Wy,i−W′x,iβ̂−W′∆x,iδ̂ is a residual of the
small sample regression in (13).

The asymptotic variances in (14) and (15) are different with convergence orders, (W′xM∆xWx)−1 =
Op(T

−2) while (W′∆xMxW∆x)−1 = Op(1). The different convergence rates imply different orders of

convergence for estimators β̂ and δ̂ with T (β̂ − β0) = Op(1) and δ̂ − δ0 = Op(1), respectively. The

latter estimator δ̂ for the long run endogeneity parameter is inconsistent but yields to asymptotically
valid t and F tests for

Hδ
0 : Rδδ0 = rδ vs. Hδ

1 : Rδδ0 6= rδ, (18)

where Rδ is a pδ × d matrix. The corresponding Wald statistic and its limiting distribution are

F (δ̂) =
1

σ̂2
0·x

(Rδ δ̂ − rδ)′
[
Rδ(W′∆xMxW∆x)−1Rδ

]−1
(Rδ δ̂ − rδ)/pδ (19)

⇒ K

K − 2d
· Fpδ,K−2d.

3 Asymptotic Behavior of TA-OLS with Local-to-Unity Regres-
sors

The TA-OLS method is very convenient for practitioners with the standard t and F limits. However,
it crucially relies on the exact unit root assumption on the cointegration regressor xt. Once the
cointegration system departs from the unit root assumption, it is questionable whether the the
standard t and F tests of the TA cointegration system can be still valid. To answer this, we adopt
a local-to-unity approximation of the cointegration regressor

xt = ρTxt−1 + uxt and ρT = Id −
C0

T
, (20)

where C0 = diag(c0,1, . . . , c0,d) denotes the local-to-unity coefficients in the regressor vector xt =
(x1t, . . . , xdt)

′. For simplicity of expositions, we assume a common local-to-unity parameter c0,1 =
. . . = c0,d = c0 ≥ 0 for each components of xit. A generalization to different c0,i’s for different
xit’s can be made straight and is discussed later in Section 5. When c0 = 0, the regressor xt is the
exact I(1) process. Modeling the cointegration regressor xt as in (20) allows for a smooth transition
between stationary but highly persistent and the “exact” I(1) non-stationary series and provides
a more reasonable approximation to the TA cointegration system in (4). This is especially when
the length of time series is not enough to identify the exact nature of the auto-regressive root of xt
(Elliott, 1998).

With the local-to-unity approximation of regressor xt in (20), the differenced process ∆xt be-
comes

∆xt = −c0xt−1

T
+ ux,t for t = 1, ..., T.

Thus, the low-frequency transformation {W∆x,i}Ki=1 is no longer the same as {Wux,i}Ki=1 but is now
a combination of two transformed data

W∆x,i=
1√
T

T∑
t=1

uxtφi

(
t

T

)
− c0

1√
T

T∑
t=1

[xt−1

T

]
φi

(
t

T

)
(21)
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for i = 1, ...,K. The augmented cointegration regression in (3) is modified into

yt = α0 + x′tβ0 + δ′0∆xt + ũ0·xt for t = 1, ..., T,

where ũ0·xt := u0·xt + c0(δ′0xt−1/T ), which induces the following TA regression model:

Wy,i = W′x,iβ0 + W′∆x,iδ0 + W̃0·x,i for i = 1, ...,K, (22)

where

W̃0·x,i := W0·x,i +
c0

T 3/2

[
T∑
t=1

δ′0xt−1φi

(
t

T

)]
.

When compared to (4), the error term, W̃0·x,i, includes an additional term, c0T
−3/2

∑T
t=1 δ

′
0xt−1φi(t/T ),

which is a (scaled) low frequency transformation of xt−1. Because of this extra term, we cannot
guarantee the standard t and F limits, as in (17) and (19), under the local-to-unity. To formally
establish the asymptotic properties of the TA-OLS estimator γ̂ = (β̂′, δ̂′)′, we make the following
assumptions.

Assumption 1 The vector process {ut = (u0t, u
′
xt)
′}Tt=1 satisfies the FCLT in (9).

Assumption 2 (i) For i = 1, . . . ,K, each function φi (·) is continuously differentiable; (ii) For
i = 1, . . . ,K, each function φi (·) satisfies

∫ 1
0 φi (x) dx = 0; (iii) The functions {φi (·)}Ki=1 are

orthonormal in L2[0, 1].

Along with the local-to-unity regressors in (20), Assumption 1 of FCLT enables us to invoke
the result in Phillips (1987) and get

1√
T
x[Tr] ⇒ Ω1/2

xx Jc0(r), (23)

where the Ornstein-Uhlenbeck (OU) process is defined by Jc0(r) =
∫ r

0 exp(−c0(r−s))dWx(s). Since
Assumption 2 holds in both (6) and (7), we can repeat the weak convergence approximations in
(12) under the local-to-unity assumption in (20) as below:

Wx,i

T
⇒ Ω1/2

xx

∫ 1

0
φi (r) Jc0(r)dr

d
= N

(
0,Ω1/2

xx Σc0Ω1/2
xx

)
, (24)

where Σc0 = 1
2c0

∫ 1
0

∫ 1
0 φi(r)φi(s){exp[−c0|r − s|] − exp[−c0(r + s)]drds · Id, for i = 1, ...,K. The

above weak convergence shows that the local-to-unity assumption does not change the Gaussian
limits but has a different asymptotic variance from (11). In the proof of Proposition 1, we show
that

1

T 3/2

T∑
t=1

xt−1φi

(
t

T

)
=

Wx,i

T
+Op

(
1

T

)
.

Thus, the transformed first difference W∆x,i and the regression error W̃0·x,i have the following weak
convergence limits of

W∆x,i ⇒ Ω1/2
xx

[∫ 1

0
φi(r)dWx(r)− c0 ·

∫ 1

0
φi(r)Jc0(r)dr

]
, (25)

W̃0·x,i ⇒ σ0·x

∫ 1

0
φi(r)dw0(r) + c0 ·

[
Ω1/2
xx δ0

]′ ∫ 1

0
φi(r)Jc0(r)dr

9



for i = 1, ...K, respectively. Combining these results, the TA regression in (22) is now asymptotically
equivalent to:

Wy,i ' S′x,iβT,0 + S′∆x,iδ0 +
[
S0·x,i + cδ′0Sx,i

]
for i = 1, ...,K,

where Sx,i, S∆x,i, and S0·x,i are the Gaussian random limits of Wx,i/T, W∆x,i, and W0·x,i, respec-
tively, which are specified in (24), (25), and (11), respectively. Then, the asymptotic behavior of
the TA-OLS estimator is captured by

T (β̂ − β0) =

[
W′x
T

(IK − P∆x)
Wx

T

]−1 [W′x
T

(IK − P∆x)W̃0·x

]
⇒
[
S′x(IK − PS∆x

)Sx
]−1 S′x(IK − PS∆x

)S0·x + c0δ0,

where PS∆x
= S∆x(S′∆xS∆x)−1S′∆x. Conditioning on Sx and S∆x, the first majorant term char-

acterizes the weak Gaussian limit of TA-OLS estimator under the unit root regressors which is
centered toward the true parameter β0. This limit is the same as what is derived under the exact
unit root regressor in HS, except for the covariance structure of the conditioning random variables
Sx and S∆x. The second term c0δ0 indicates that the asymptotic distribution of β̂ possesses a bias
term c0δ0. We formally state the weak convergences result of TA-OLS estimator including δ̂ in the
following Proposition. Define

ΥT =

 T · Id 0
d×d

0
d×d

Id

 . (26)

Proposition 1 Let SX = [S′x,S′∆x]′ . Under Assumptions 1 and 2, the local-to-unity regressors in
(20), and as T →∞ but holding K fixed, we have that

ΥT (γ̂ − γ0) =

(
T (β̂ − β0)

δ̂ − δ0

)
⇒
[
c0δ0

0

]
+MN(0, σ2

0·x(S′XSX)−1).

From the result of Proposition 1, we have that

T (β̂ − β0)⇒MN
[
c0δ0, σ

2
0·x(S′xMS∆x

Sx)−1
]
,

δ̂ − δ0 ⇒MN
[
0, σ2

0·x(S′∆xMSxS∆x)−1
]
,

where the convergences hold jointly. Since the local-to-unity regressor affects the limit behavior of
β̂ by shifting the center of the weak limit T (β̂− β0) from zero to the asymptotic bias term cδ0, the
TA-OLS estimator β̂ is asymptotically unbiased only if i) the regressors have the exact unit root
processes, i.e. c0 = 0, or ii) there is no long run simultaneity between ut and uxt, i.e. δ0 = 0. Both of
these cases, however, are unlikely to show up in practice. The results are similar with Elliott (1998)
which finds the fragility of time-domain cointegration inference in the presence of local-to-unity
regressors. Our work also shows that the same asymptotic bias terms appear in the domain of low
frequencies.

The limiting distribution of the cointegration vector is affected by the local-to-unity regressor.
However, the result in Proposition 1 indicates that δ̂ is still asymptotically centered toward δ0

and has the same asymptotic behavior as the case of exact unit root regressors. Under the null
hypotheses in (16) and (18), these results lead to

T (Rββ̂ − rβ)⇒MN(c0Rβδ0, σ
2
0·x
[
Rβ(S′xMS∆x

Sx)−1R′β
]
), (27)

Rδ δ̂ − rδ ⇒MN(0, σ2
0·x
[
Rδ(S′∆xMSxS∆x)−1R′δ

]
).

10



In view of the joint weak convergence results in (24) and (25), it is easy to check

Rβ
[
(W′x/T )M∆x(W′x/T )

]−1
R′β ⇒ Rβ

[
S′xMS∆x

Sx
]−1

R′β, (28)

Rδ(W′∆xMxW∆x)−1R′δ ⇒ Rδ
[
S′∆xMSxS∆x

]−1
R′δ.

Thus, if one finds an asymptotic behavior of σ̂2
0·x under the near-unity regressor in (20), we are

able to find a weak limit of Wald and t statistics for the parameters γ = (β′0, δ
′
0). The results are

summarized in the following Proposition.

Proposition 2 Let Assumptions 1 and 2, and the null hypotheses in (16)-(18) hold . Define
θ = c0[Rβ [S′xMS∆x

Sx]−1R′β]−1/2(Rβδ0/σ0·x). Then, under the fixed-K asymptotics, we have

(a) F (β̂)⇒ K
K−2d · Fpβ ,K−2d(||θ||2);

(b) t(β̂)⇒
√

K
K−2d · tK−2d(θ);

(c) F (δ̂)⇒ K
K−2d · Fpδ,K−2d;

(d) t(δ̂)⇒
√

K
K−2d · tK−2d.

In the proof of Proposition 2, we show that the asymptotic variance estimate σ̂2
0·x for the long run

projected variance σ2
0·x weakly converges to χ2

K−2d limiting distribution. Since all other components
of test statistics, except the bias term c0Rβδ0, behave the same way as in the case of the exact
unit root regressors, we can capture the effect of the local-to-unity regressors on the hypothesis
tests of β0 only by looking at the random non-centrality parameter ||θ||2 in the limiting F and t
distributions. Let r2 = (σ0xΩ−1

xxσx0)/σ0 denote a squared long run correlation vector between {u0t}
and {uxt}. When d = pβ = 1, a simple algebra can show that the non-random part of ‖θ‖2 is equal
to c2

0 · r2/(1 − r2), which implies that the null rejection rate for TAOLS t-test approaches to one,
as the squared long run correlation r2 gets close to one.

The presence of non-zero ‖θ‖2 implies that the hypothesis test using the Wald statistics in (17)
will tend to over-reject. However, the results in Proposition 2 (c) and (d) indicate we can still
perform asymptotically valid Wald and t tests about the long run endogeneity coefficient δ0. This
is expected from our previous investigation on the limit behavior of δ̂, which is not affected by the
local-to-unity regressors. These theoretical implications are numerically supported in the Monte
Carlo simulation in Section 6.

4 Bias-corrected Inferences for β0

In this section, we provide a method to correct the asymptotic bias of TA-OLS test statistics for
β0. The modification not only adjusts the asymptotic locational bias of the TA-OLS estimator,
but also fully accounts for the estimation uncertainties embodied in the bias correction term. Let
Γc0 = (Rβ,−c0Rβ) be a p× 2d matrix formed by the hypothesis matrix Rβ and the local-to-unity

parameter c0. Then, under Hβ
0 : Rββ0 = rβ,

Γc0ΥT [γ̂ − γ0] =
(
Rβ −c0Rβ

)( T (β̂ − β0)

δ̂ − δ0

)
(29)

= T
[
Rβ(β̂ − c0 · δ̂/T )− rβ

]
+ c0Rβδ0.

11



Using the joint convergence result in Proposition 1 and continuous mapping theorem, we have that

Γc0ΥT [γ̂ − γ0] = T (Rβ(β̂ − c0 · δ̂/T )− rβ) + c0Rβδ0 (30)

⇒ Γc0

[
c0δ0

0

]
+ Γc0(S′XSX)−1S′XS0·x

d
= MN

(
c0Rβδ0, σ

2
0·xΓc0(S′XSX)−1Γ′c0

)
.

Therefore, the plugged-in estimator of β̂ − c0(δ̂/T ) is able to correct the bias of c0(δ0/T ) in the
limiting distribution of T (β̂ − β0), because of

T (Rβ(β̂ − c0 · δ̂/T )− rβ)⇒MN
(
0, σ2

0·xΓc0(S′XSX)−1Γ′c0
)
. (31)

It is essential to point out the asymptotic variance of the plugged-in estimator β̂ − c0(δ̂/T ) is no
longer the same as that of β̂ in (27). This is because the asymptotic variance of the plugged-in
estimator has to reflect the estimation uncertainty of δ̂ in its limiting distribution. This motivates
us to construct the following modified Wald statistic:

F (β̂; c0) =
T 2

σ̂2
0·x

(Rβ[β̂ − c0 · (δ̂/T )]− rβ)′
[
Γc0(Υ−1

T W′XWXΥ−1
T )−1Γ′c0

]−1
(32)

× (Rβ[β̂ − c0 · δ̂/T ]− rβ)/p.

When p = 1, we construct the modified t statistic for one-sided alternative as below:

t(β̂; c0) =
T (Rβ[β̂ − c0 · δ̂/T ]− rβ)√

σ̂2
0·xΓc0(Υ−1

T W′XWXΥ−1
T )−1Γ′c0

. (33)

Note that the estimations of δ0 and σ2
0·x, which are necessary for the modified TA-OLS test statistics,

are automated in our TA-OLS framework. In fact, practitioners just need to run a classical OLS
regression with the transformed data {Wy,i,W′x,i,W′∆x,i}Ki=1 and obtain β̂, δ̂, and σ̂2

0·x at once. The

theorem below establishes the limiting null distributions of F (β̂; c0) and t(β̂; c0) under the fixed-K
asymptotics.

Theorem 3 Under Assumptions 1 and 2, and T →∞ but holding K fixed, we have that

F (β̂; c0)⇒ K

K − 2d
· Fp,K−2d and t(β̂; c0)⇒

√
K

K − 2d
· tK−2d.

Theorem 3 indicate one can construct valid t and F tests using the modified t and Wald
statistics. The modified statistics not only adjust the locational bias but also reflect the estimation
uncertainty of the δ̂ in the bias correction term. After we fully account the effect of the plugged-in
bias correction c0(δ̂/T ) on the modified statistics, we obtain the exact same asymptotic F and t
limits. Note that the resulting F and t limits also take into account the estimation uncertainties
for the long run variance term σ2

0·x. Practically, the result in Theorem 3 implies that one can
conveniently implement the modified test statistics, F (β̂; c0) and t(β̂; c0), using the standard t and
F testing methods.

When pβ = 1, Theorem 3 shows a valid 100(1 − α)% confidence interval (CI) for the testing

12



parameter Rβ0 can be constructed as

CIRβ0 (c0; 1− α) =
[
r

1−α/2
β,l (c0), r

1−α/2
β,h (c0)

]
, (34)

where

r
1−α/2
β,l (c0) = Rβ

[
β̂ − c0δ̂

T

]
− 1

T

√
σ̂2

0·xΓc0
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c0 ·

√
K

K − 2d
· t1−α/2K−2d , (35)

r
1−α/2
β,h (c0) = Rβ

[
β̂ − c0δ̂

T

]
+

1

T

√
σ̂2

0·xΓc0
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c0 ·

√
K

K − 2d
· t1−α/2K−2d , (36)

and t
1−α/2
K−2d is the 1 − α/2 quantile from the tp,K−2d distribution. With the nearly integrated

regressors, the modified CI in (34) shifts the location of the interval up to −c0(Rδ̂/T ). With the
location adjustment −c0(Rδ̂/T ), one may come up with the following CI:

Rβ

[
β̂ − c0δ̂

T

]
± 1

T

√
σ̂2

0·xRβ(W′XM∆xWX)−1R′β ·
√

K

K − 2d
· t1−α/2K−2d . (37)

The common critical value t
1−α/2
K−2d and estimated variance terms σ̂2

0·x reflect the uncertainty of time
series in the (un)modified confidence intervals, but there is notable difference in the margin of errors
of two confidence intervals between (34) and (37). With some additional algebra, we can express
the term in (34) by

Γc0
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c0 = Rβ

[
Λ1(c0)

(
W′xM∆xWx

)−1
+ Λ2(c0)

(
W′∆xMxW∆x

)−1
]
R′β, (38)

where
Λ1(c0) = T 2(Id + c0T

−1
[
W′∆xW∆x

]−1 W′∆xWx),

Λ2(c0) = c2
0Id + c0T

[
W′xWx

]−1 W′xW∆x.

That is, the measure of uncertainty in (34) is a weighted average of standard error terms for β̂
and δ̂, where weights are given by Λ1(c0) = Op(T

2) and Λ2(c0) = Op(1), respectively. The relative
difference in the order of magnitude between these weights is based on the different convergence
rates of the variance estimates (W′xM∆xWx)−1 = Op(T

−2) and (W′∆xMxW∆x)−1 = Op(1) for the

estimators β̂ and δ̂, respectively. Interestingly, the weights are functions of the OLS coefficients
from the two transformed regressors, Wx and W∆x, and the local-to-unity parameter c0.

Readers are referred to Section S.4 of Supplementary Appendix, which applies the bias-corrected
inference of modified TA-OLS to test simultaneous restrictions on β0 and δ0 and discuss a non-linear
testing hypothesis.

When c0 = 0, i.e. the regressor xt has an exact unit root, it is easy to check that the above CI
of β0 reduces to the standard form of symmetric CI,

Rββ̂ ±
√
σ̂2

0·xRβ(W′XM∆xWX)−1R′β ·
√

K

K − 2d
· t1−α/2K−2d ,

which is same as the TA-OLS tests in Section 2.
In the standard time domain framework, one can show that a popular endogeneity bias correct
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method such as fully modified (FM)-OLS estimator, e.g., Phillips and Hansen (1990), yields

T (β̂FM − β0)⇒MN

(
c0δ0, σ

2
0·x

[∫ 1

0
Bx(r)B′x(r)dr

]−1
)

under the local-to-unity assumption (20). Using this result, Campbell and Yogo (2006) provides
the feasible bias-corrected estimation and inference based on

T (β̂FM − c0 δ̂HAC − β0)√
σ̂2

0·x,HAC

[
1
T 2

∑T
t=1 xtx

′
t

] ⇒ N(0, 1).

A key step behind the Campbell and Yogo’s (2006) method is heteroscedasiticy autocorrelation
consistent (HAC) estimators, including δ̂HAC and σ̂2

0·x,,HAC, and the asymptotic normal critical

value for the test statistics. In our cointegration setting, δ0 and σ2
0·x are functions of the long run

variance matrix Ω. However, it is well known that the consistent HAC approach, e.g., Newey and
West (1987), is exposed to severe finite-sample noises in time series data, e.g., Kiefer and Vogelsang
(2005), Müller (2007), and Sun et al. (2008). The severity of these issues has been shown through
Monte Carlo simulation in HS. The low-frequency transformed TA-OLS framework in this paper
explicitly avoids these issues, as it does not need the separated estimation step for δ0 and σ2

0·x.
Moreover, the result in Theorem 3 that our modified TA-OLS and corresponding t and F limits
successfully account for the finite-sample uncertainties embodied in σ̂2

0·x and δ̂ 0.

5 Bonferroni-based Inference for Modified TA-OLS

5.1 Robust confidence intervals for c0

The near-unity approximation of the modified test statistics, F (β̂; c0) and t(β̂; c0), requires the
knowledge of the true local-to-unity parameter, c0, which is not consistently estimable in general.
However, one can construct a nontrivial and informative CI for the unknown parameter c0 using
several methods developed in the literature. Examples include Stock (1991), Andrews (1993),
Hansen (1999), Elliott and Stock (2001), Mikusheva’s (2007) modification of Stock (1991), and
Andrews and Guggenberger (2014). However, all these methods, except Elliott and Stock (2001),
have limitations to apply in (20) because they restrict the error process, {uxt}, to be i.i.d. or
martingale difference sequence. Therefore, we construct the CI as in Elliott and Stock (2001),
which allows for an unknown form of dependence in {uxt}, by inverting a sequence of asymptotically
optimal tests in the Gaussian autoregressive model. In Section S.3 of Supplemental Appendix, we
provide a detailed procedure for constructing the CI in Elliott and Stock (2001).

One concern with Elliott and Stock’s (2001) method is that its CI is subject to the uniformity
critique raised in Phillips (2014b) when the true local to unity parameter c0 largely deviates from
zero, thereby having a poor coverage rate.3 Such drawback of Elliott and Stock (2001) can be
addressed by using parametric and nonparametric grid-bootstrap methods, which are proposed by
Andrews (1993) and Hansen (1999), respectively. This is because the CIs in the latter two methods
are constructed by using the centered statistics on different null values of parameters in the grids,
which is crucial for achieving the uniformity (Mikusheva, 2007).

However, the CIs in Andrews (1993) and Hansen (1999) are subject to severe undercoverage
bias when we ignore the serial dependence of {uxt}. Thus, we propose a modified version of the

3We thank an anonymous referee who pointed out this issue.
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CI of Hansen (1999), which addresses both the bias arising from the serial dependence of and the
uniformity issue on Elliott and Stock (2001). The modification of Hansen (1999) proceeds as follows.
We first approximate the unknown dependence structure in {uxt} by a finite-order autoregressive
process and translate (20) to an (approximated) augmented Dickey-Fuller (ADF) form. We then
apply the grid-bootstrap method in Hansen (1999) to the ADF equation and construct a CI for
c0 using a reparameterization of autoregressive coefficients. The detailed implementation of this
procedure is provided in Section S.3 of Supplemental Appendix.

We present some simulation evidence of the CIs that are discussed above. We generate data
from (20) with T = 200, where uxt is drawn from AR(1) and MA(1) processes, and construct
CIs of Hansen (1999), Elliott and Stock (2001), and our modification of Hansen (1999) with 90%
nominal coverage rate. Tables S.1 and S.2 in Section S.5 of Supplemental Appendix report the
empirical coverage rates and average estimates of CIs under different degrees of dependence for
the autoregressive errors and the true local-to-unity parameter, c0. The results are summarized as
below.

When c0 is close to zero, e.g., c0 = 5, the method in Elliott and Stock (2001) yields accurate and
shorter CIs than other methods. However, the CIs in Elliott and Stock (2001) suffers undercoverage
biases in Table S.2, varying from 53.1% to 74.7%, when c0 grows to 20. The CI of Hansen (1999)
shows accurate coverage rates for all ranges of c0’s if there is no serial dependence, i.e., ψ = 0.
However, it is prone to poor coverage rates when ψ is non-zero. For instance, Table S.2 shows that
the CI of Hansen (1999) has almost zero coverages when ψ for AR(1) error grows to 0.75. On the
other hand, our modified CI of Hansen (1999) shows more accurate coverage rates for all ranges of
c0’s. For example, when c0 = 20, the coverage rates of modified CI of Hansen (1999), varying from
75.7% to 85.6%, significantly improve those of Elliott and Stock (2001).

In summary, we propose implementing the two methods, Elliott and Stock (2001) and the
modified version of Hansen (1999), to construct robust confidence intervals in the presence of an
unknown form of serial dependence. When the true autoregressive parameter is close to the unity,
i.e., c0 ≈ 0, we check that the CI of Elliott and Stock (2001) performs well in terms of its coverage
and length. When c0 is large, however, it suffers poor coverage rates due to the lack of uniformity.
We also find that our modified CI of Hansen (1999), which is robust to the serial dependence,
addresses the uniformity issue on Elliott and Stock (2001) and improves the coverage probability
of the CI in Elliott and Stock (2001).

5.2 Bonferroni-based confidence intervals for β0

Let ST (η1) denote a CI for c0 with 100(1− η1)% asymptotic coverage rate. With pβ = 1, which is
of the utmost importance in empirical research, we can construct a Bonferroni CI for Rββ0 as

CIB
Rββ0

(η1, η2) = ∪
c∈ST (η1)

CIRββ0 (c; 1− η2) (39)

=

[
min

c∈ST (η1)
r

1−η2/2
β,l (c), max

c∈ST (η1)
r

1−η2/2
β,h (c)

]
, (40)

where η1, η2 ≥ 0 such that η1 + η2 = α, and r
1−η2/2
β,l (c) and r

1−η2/2
β,h (c) are defined in (35) and (36),

respectively. The idea of Bonferroni-based inference has been used in various contexts in statistics
and econometrics, e.g., Cavanagh et al. (1995), Campbell and Yogo (2006), and McCloskey (2017).
By Bonferroni’s inequality, the above Bonferroni CI yields an asymptotic coverage rate at least
100(1− α)%, i.e.,

lim inf
T→∞

P
[
Rββ0 ∈ CIB

Rββ0
(η1, η2)

]
≥ 1− α. (41)
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The infeasible CI, [r
1−η2/2
β,l (c), r

1−η2/2
β,h (c)], depends on c only through T−1cδ̂ and Γc. Thus, the

computational cost of finding (40) is not too high when we search for the maximum and minimum

of r
1−η2/2
β,h (c) and r

1−η2/2
β,l (c), respectively, over ST (η1). In Section S.4 of Supplemental Appendix,

we characterize some conditions when the lower (or upper) bound is monotone in c, making the
minimization (or maximization) much simpler when computing our Bonferroni CIs.

As an alternative to the Bonferroni method in (39), we can consider Bonferroni critical values
by taking maximum and minimum over the asymptotic critical values of the unmodified t(β̂), as
a function of c, e.g., McCloskey (2017). The result in Proposition 2-(b) shows that t(β̂) has the
mixed non-central t limit, tK−2d(θ), where the random non-centrality parameter θ depends on c0,
δ0, and σ2

0·x. This leads us to formulate the following Bonferroni critical values:

min
c∈ST (η1)

(√
K

K − 2d
· tη2/2
K−2d(θ̂(c))

)
and max

c∈ST (η1)

(√
K

K − 2d
· t1−η2/2
K−2d (θ̂(c))

)
,

where

θ̂(c) =
c ·Rβ δ̂HAC

σ̂0·x,HAC

√
Rβ [(W′x/T )M∆x(W′x/T )]−1R′β

.

The corrected critical value via θ̂(c) can be exposed to the estimation uncertainty of the nonpara-
metric HAC estimators, δ̂HAC and σ̂0·x,HAC. In contrast, the Bonferroni steps in (39) and (40)

avoid the estimation issues involved in δ̂HAC and σ̂0·x,HAC because they make uses of the modified
TA-OLS statistics, which induce the Bonferroni CI in (35) and (36).4

When we allow different c0,i’s for different cointegration regressors xit, the presence of multi-
dimensional nuisance parameters is a potential challenge in calculating our Bonferroni intervals.
However, one can follow the general Bonferroni principle with a joint confidence set, ST (η1) ∈ Rd,
which gives an asymptotically correct coverage for the true local-to-unity parameters, i.e.

lim inf
T→∞

P (c0 ∈ ST (η1)) ≥ 1− η1,

where c0 = (c0,1, c0,2, . . . , c0,d)
′ is the true local-to-unity parameters. Then, the corresponding

Bonferroni CI for testing Hβ
0 : Rββ0 is:

CIB
Rβ0

(η1, η2) = ∪
c=(c1,...,cd)∈ST (η1)

CIRβ0 (c; 1− η2) (42)

=

[
min

c∈ST (η1)
r

1−η2/2
β,l (c) , max

c∈ST (η1)
r

1−η2/2
β,h (c)

]
,

where [r
1−η2/2
β,l (c) , r

1−η2/2
β,h (c)] is a generalized version of the bias-corrected CI in (34), which is

defined as

r
1−η2/2
β,l (c) :=

[
Rββ̂ −

Rβdiag(c)δ̂

T

]

− 1

T

√
σ̂2

0·xΓc

[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c ·

√
K

K − 2d
· t1−η2/2
K−2d ,

4We thank an anonymous referee who motivated us to clarify this subtlety in Bonferroni-based inferences using
TA-OLS.
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and

r
1−η2/2
β,h (c) :=

[
Rββ̂ −

Rβdiag(c)δ̂

T

]

+
1

T

√
σ̂2

0·xΓc

[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c ·

√
K

K − 2d
· t1−η2/2
K−2d ,

with Γc := (Rβ,−Rβdiag(c)). By construction, both r
1−η2/2
β,l (c) and r

1−η2/2
β,h (c) are functions of

Rβdiag(c). Thus, only a subset of c = (c1, . . . , cd) which corresponds to non-zero components in
Rβ is relevant. This implies that the number of specific components for β, in which researcher
specifies in Rβ, will set the computational complexity of constructing the Bonferroni interval. In
many empirical applications, it is not unreasonable to pay attention to only a few components of
β, e.g., Rβ = [1, 0, . . . , 0] and Rβ = [1,−1, . . . , 0], which does not add much computational burden
in calculating the Bonferroni interval.

For the joint confidence set, ST (η1), one feasible way is to construct a product set of [ci, ci] for
i = 1, . . . , d, where [ci, ci] is a CI for c0,i with 100(1 − η1/d)% coverage rate. Then, the resulting
confidence set ST (η1) = [c1, c1]× . . .× [cd, cd] satisfies

lim sup
T→∞

P (c0 /∈ ST (η1)) = lim sup
T→∞

P (c0,i /∈ [ci, ci] for some i = 1, . . . , d)

≤
d∑
i=1

lim sup
T→∞

P (c0,i /∈ [ci, ci]) = η1,

which implies that the rectangular confidence set, ST (η1), can formulate a valid Bonferroni inference
with the vector-valued cointegrating regressor xt. Still, the above construction of the joint confidence
set is conservative. In principle, an exact joint confidence set can be constructed if we extend
Proposition 1 in Elliott and Stock (2001) to a vector-valued xt and invert their Neyman-Pearson
tests for the vector-valued Gaussian autoregression model. We conjecture this way of construction
yields an elliptical shape of ST (η1). However, to our knowledge, there exists no existing work
that generalizes Elliott and Stock (2001) to the vector-valued case. We also note the absence of
a multivariate version of Hansen’s (2001) grid-bootstrap method in the literature. It would be
interesting to develop exact confidence set for c and apply it to our Bonferroni method, and we
leave this for future research.

Lastly, the Bonferroni-based CIs in (39) are often too wide with a higher coverage rate than
the nominal one (Cavanagh et al., 1995). To avoid the excessive conservatism conveniently, we
implement a refined version of (40) which chooses a larger tuning parameter η̃1 so that the refined
CIB

Rβ0
(η̃1, η2) becomes a subset of the original CIB

Rβ0
(η1, η2) . As a result, the Bonferroni inequality

in (41) has less slack. This way of refinement is also implemented in Campbell and Yogo (2006) in
the predictive regression model. For the choice of the Bonferroni tuning parameters, Campbell and
Yogo (2006) fix η2 = α and numerically search η̃1 that satisfies (41) by simulating the asymptotic
coverage probabilities of the Bonferroni CI. In our Bonferroni-based inference, we choose the values
of η̃1 = 0.10 and η2 = α, which shows good performances of empirical sizes over a wide range of
DGPs simulated in Section 6. The detailed numerical results are summarized in Figures S.1–S.4 in
Section S.5 of Supplemental Appendix. Yet, the simulation-based method might be challenging in
practical applications because it requires the knowledge of several unknown model parameters such
as Ω, ρT , and the distribution of {ut}. There can be several ways to overcome this difficulty and
select a data-adaptive value of Bonferroni tuning parameters. For example, one may simulate the
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(asymptotic) coverage probabilities based on parametric approximation of the true DGP and use
them to find the tuning parameters of Bonferroni CI, e.g., Franchi and Johansen (2017). We leave
this for future research.

6 Monte Carlo Evidence

In this section, we evaluate the performance of the modified TA-OLS methods and correspond-
ing Bonferroni-based inferences in finite samples. We compare them with several other methods,
including the unmodified TA-OLS approach in HS and the IVX test developed in Phillips and
Magdalinos (2009) and Phillips and Lee (2016).

6.1 Data generation process

For a data generation process (DGP) of the cointegration regression, we consider the following
triangular cointegration system as in Phillips (2014a) and HS:

yt = α0 + x′tβ0 + u0t

xt = ρTxt−1 + uxt
, ut =

(
u0t

uxt

)
= Θut−1 + εt, (43)

with a local-to-unity coefficient ρT = Id − C0/T with C0 =diag(c0,1, . . . , c0,d), and

εt =

(
ε0t
εxt

)
i.i.d∼ N (0,Σ) , Θ = ψ · Id+1, Σ = Jd+1,d+1 · φ+ Id+1 · (1− φ),

and Jd+1,d+1 is the (d + 1) × (d + 1) matrix of ones. The initial value of the error process ut is
drawn from standard normal distribution. To minimize the initialization effect, we generate a time
series of length 2T and drop the first T observations. The parameter ψ controls the persistence
of individual components in ut = (u0t, u

′
xt)
′ ∈ Rd+1. We set the values of ψ as {0.25, 0.50, 0.75},

so the stationary cointegration error ut is in the reasonable range of persistency. The parameter
φ is a pairwise correlation coefficient between the elements of ut and characterizes the degree of
endogeneity. With some additional algebra, the squared long run correlation r2 = σ0xΩ−1

xxσx0/σ
2
0

is expressed by dφ2/((1−φ) + dφ). Using this formula, we set φ to satisfy r2 ∈ {0, 0.25, 0.50, 0.75}.
In our simulations, we consider d ∈ {1, 2} as a dimension of the cointegration regressor xt, and

set the true regression coefficients by α0 = 1, and β0 = 1 or β0 = (1, 1)′. When d = 1,we take the
AR(1) coefficients of xt in {1, 0.975, 0.95, 0.90} with sample size T = 200, and set the corresponding
pairs of local-to-unity parameters c0 ∈ {0, 5, 10, 20}. For the case of the multiple regressors, with
d = 2, we take the same values of c0,1 for the first regressor and set the second regressor as a unit
root process with c0,2 = 0. Although we have the exact I(1) process in the second regressor, our
feasible Bonferroni methods do not impose this knowledge of c0,2 to reflect a practical empirical
application. Instead, they construct the joint rectangular confidence set for (c0,1, c0,2) which is
described in subsection 5.2.

6.2 Choices of tests

The null hypotheses of interests for the true parameter, β0 = (β01, . . . , β0d)
′, are
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Hβ
0 : β01 = 1 vs Hβ

1 : β01 6= 1 with d = 1, (44)

Hβ
0 : β01 = β02 vs Hβ

1 : β01 6= β02 with d = 2, (45)

and corresponding testing matrix is Rβ = (1, 0) with rβ = 1, and Rβ = (1,−1) with rβ = 0,
respectively. Also, we test the long run endogeneity parameter with the following null hypothesis
of

Hδ
0 : δ0 = 0 and Hδ

1 : δ0 6= 0.

We consider Fourier basis functions given in (6) for our TA-OLS framework, as the same numerical
evidence holds for the cosine transformation in (7). For fixed values of K, we set K = 8, K = 16,
and K = 24 for the AR(1) parameters ψ = 0.75, ψ = 0.50, and ψ = 0.25, respectively. These choices
of K are shown to have good finite sample performances in various literature of fixed smoothing
asymptotics with extensive numerical experiments. See, for example, Müller and Watson (2013,
2017), HS, and Lazarus et al. (2018). In all of our simulations, the number of simulation replications
is 10,000.

In our simulations, we consider the empirical size of five different types of TA-OLS t-tests studied
in this paper at nominal size 5%. The first test is the unmodified TA-OLS test, (TAOLS hereafter),
considered in HS. The second test is an infeasible version of the modified TA-OLS t-test in Theorem
3, (M-TAOLS hereafter), which treats the true local-to-unity parameter as known. The next three
tests are feasible versions of the modified TA-OLS test which implement the Bonferroni-based CI
in Section 5, but they use different methods to construct CIs for the local-to-unity parameter:
the first one (Bonf-M-TAOLS (Hansen) hereafter) uses Hansen’s (2001) grid-bootstrap method,
the second one (Bonf-M-TAOLS (M-Hansen) hereafter) uses our modification of Hansen’s (2001)
grid-bootstrap method, and the third one (Bonf-M-TAOLS (ES) hereafter) uses Elliott and Stock’s
(2001) method. These three Bonferroni tests reject when the null hypothesized value does not fall
into the Bonferroni confidence intervals. It is important to point out that Bonf-M-TAOLS (Hansen)

ignores the temporal dependence in {uxt}. On the other hand, Bonf-M-TAOLS (M-Hansen) reflects
the dependence structure in {uxt} on the construction of CI for c by a finite-order (approximated)
autoregressive process. For the choice of the Bonferroni tuning parameters, we fix η2 = 0.05 and
select the value of η̃1 as 0.10.

As the last test in our simulation, we consider the IVX estimator in Phillips and Magdalinos
(2009) and Phillips and Lee (2016). Statistical inference via the IVX estimator has been known to
solve the difficulty of the cointegration regression with the near-unity regressor, which is presented
in our setting. The IVX estimator for β0 is

β̂IVX =

(
T∑
t=1

z̃tx̃
′
t

)−1( T∑
t=1

z̃tỹt − T Λ̂x0

)
,

where x̃t = xt − T−1
∑T

t=1 xt, ỹt = yt − T−1
∑T

t=1 yt are demeaned observations. Λ̂x0 is the esti-
mator for the one-sided long run covariance Λx0 =

∑∞
j=0E[uxtu0t−j ]. z̃it’s are the self-generated

instrumental variables, defined as:

z̃it =

t∑
j=1

(
1− cz

T γ

)t−j
∆xj .

For the tuning parameters, γ and cz, we follow Phillips and Lee (2016) and use γ ∈ {0.85, 0.90, 0.95}

19



and cz = 5, respectively. Here, we only report results with γ = 0.85, as the quantitative results
with other choices of γ are very similar. With β̂IVX, the IVX t-test uses the asymptotic normal
critical value with the following t-statistics:

tIVX =
Rββ̂IVX − r√

Rβ
{

(X ′PzX)−1σ̂2
0

}
R′β

,

where σ̂2
0 is the long run variance estimator of σ2

0 =
∑∞

j=−∞E[u0tu0t−j ]. To nonparametrically esti-

mate the nuisance parameters, Λ̂x0 and σ̂2
0, we use Bartlett kernel with the optimal bandwidth rule

in Andrews (1991). It is important to point out that this external procedure to the nonparametric
long run variance estimators is required to implement the IVX test. In contrast, the TA-OLS meth-
ods developed in our paper automates the estimation of the long run nuisance parameters such as
δ̂ and σ̂2

0·x. In fact, our simulation results below show that the finite sample uncertainties embodied
in the nonparametric long run variance estimators have crucial impacts on the performance of the
IVX test in finite samples.

6.3 Results for finite sample sizes

For testing (44) in the single dimensional case, Tables S.3–S.5 and Figures S.5–S.7 report empirical
sizes (Type I error) of five different TA-OLS and the IVX tests for c0 ∈ {0, 5, 10, 20}. For the
multi-dimensional case in (45), we only report the results for (c0,1, c0,2) = (20, 0) in Table S.6, as
the quantitative implications of other cases are quite similar.

In the unit root case, that is c0 = 0, both TAOLS and M-TAOLS have empirical sizes close to
the nominal size of 5%. This is not surprising given that TAOLS is asymptotically valid under the
exact unit root assumption. The results also show that Bonf-M-TAOLS (Hansen), which ignores
the dependence structure in {uxt} suffers from size distortions varying from 7%–23%. The size
distortion of Bonf-M-TAOLS (Hansen) is emphasized when the degree of serial dependence, ψ,
is significant, e.g., ψ ∈ {0.50, 0.75}. On the other hand, the Bonferroni based methods which
reflect the dependency in {uxt}, Bonf-M-TAOLS (M-Hansen) and Bonf-M-TAOLS (ES) yields to
correct empirical sizes, although Bonf-M-TAOLS (M-Hansen) is mildly undersized varying from
3.6% to 4.9%. The variations between these two Bonferroni-based methods can be explained by
the different ways of constructing CIs for c0. While Bonf-M-TAOLS (ES) inverts the asymptotically
efficient GLS-based unit-root test, Bonf-M-TAOLS (M-Hansen) implements the grid-bootstrap t-
test in augmented Dickey-Fuller equation.

Second, as c0 deviates from zero, TAOLS suffers from severe size distortions, especially when the
squared long run correlation (r2), and the local-to-unity parameter (c0) increase. When r2 = 0.75,
our numerical results in Tables S.3–S.5 show that the size distortions of TAOLS can be significant,
e.g., 37.0%–49.3%, for even slight deviation from a unit root regressor, e.g., c0 = 5. This result
is consistent with our theoretical results in Proposition 2. Also, Tables S.3–S.5 show that the
IVX test (IVX) which is known to be robust in the presence of the local-to-unity regressor, can be
size-distorted in finite-samples when ψ is large. This is because the normal critical value in the
IVX test statistics completely ignores the estimation uncertainty in the nonparametric estimators
Λ̂x0 and σ̂2

0. A similar message is pointed out in HS, who finds poor performance of fully-modified
(FM) cointegration in the unit root cointegration regressors. Our results also show that the size
distortions of IVX can be amplified when the local-to-unity parameter (c0) and the degree of the
long run endogeneity (r2) increases. We find that the IVX test can work the best when u0t has a
low serial correlation, e.g., ψ = 0.25, and the cointegration regressor xt is not too deviated from

20



the unit root, e.g., c0 = 5.
We also find that the infeasible M-TAOLS has the most accurate finite sample sizes for all

values of r2 and c0 considered in our simulations. Also, the feasible Bonferroni-based methods,
Bonf-M-TAOLS (M-Hansen)and Bonf-M-TAOLS (ES), have correct sizes, varying 1.2%–4.2% and
1.3%–7.2%, respectively. The conservatism of Bonferroni comes from the Bonferroni step in (39)
and (40). While Bonf-M-TAOLS (M-Hansen)and Bonf-M-TAOLS (ES) show similar performances
for c0 ∈ {5, 10}, Tables S.3–S.5 indicate that Bonf-M-TAOLS (ES) can be size distorted when c0 is
large, e.g., c0 = 20. This is because Elliott and Stock’s (2001) CI is subject to uniformity critique
when the true local-to-unity parameter c largely deviates from zero. In contrast, Bonf-M-TAOLS
(M-Hansen) does not suffer from this drawback because it uses a uniform CI for c0 and reflect the
dependency in {uxt}.

In summary, first, there is a large amount of size distortions for TAOLS in the local-to-unity
case with non-zero r2. Second, treating c0 as known, the infeasible M-TAOLS successfully corrects
the size distortions of TAOLS. When c0 is unknown, the feasible versions of our modified TA-
OLS, Bonf-M-TAOLS (ES)and Bonf-M-TAOLS (M-Hansen, have correct sizes. However, our results
indicate that ignoring the dependence structure in {uxt} in Bonf-M-TAOLS (Hansen) drives severe
size distortions in the Bonferroni-based method. Also, the valid Bonferroni-based TA-OLS methods
outperform IVX with large margins when ψ is 0.75. Lastly, our unreported results, which are
available upon requests, indicate that we can precisely perform the endogeneity test, i.e., a test of
whether δ0 = 0, regardless of the local-to-unity parameters c0. This is consistent with our fixed-K
asymptotic results in Proposition 2 (c) and (d).

6.4 Results for finite sample power

Since our feasible Bonferroni-based TA-OLS methods are mildly undersized in most of our DGPs,
we expect that this conservatism results in some power loss compared to other types of tests. To
investigate this aspect, we simulate local power curves assuming that the true parameter of coin-
tegration is from the local alternative hypothesis β = β0 + b/T, where b ∈ [−25, 25] measures
the magnitude of the local departure. To make meaningful power comparisons between differ-
ent methods, we investigate size-adjusted power curves for M-TAOLS, Bonf-M-TAOLS (M-Hansen),
Bonf-M-TAOLS (ES), and IVX. We implement the size adjustments of M-TAOLS and IVX by com-
puting empirical quantiles of their test statistics under β = β0. For Bonf-M-TAOLS (M-Hansen)and
Bonf-M-TAOLS (ES), we adjust their empirical rejection probabilities under β = β0 to be the nom-
inal level 5% by numerically searching values of the tuning parameter η̃2, given η1 = 0.05. The
values of η̃2 depend on the choices of c0, ψ, and r2 in true DGPs. We compute the finite sample
power curve of each procedure for c0 ∈ {0, 5, 10, 20} with various degrees of r2 and ψ considered in
previous subsection. To save space, we only report the results for ψ = 0.50 in Figures S.8–S.11, as
qualitative implications for other values of ψ can be delivered in a similar way.

The results in Figures S.8–S.11 first indicate that the power of M-TAOLS outperforms the feasible
Bonferroni-based TA-OLS and IVX tests in all cases. Thus, the cost of the lack of knowledge of c0

is reflected on the relative power loss of the Bonferroni-based TA-OLS tests. Figures S.8–S.11 also
indicate that the relative power losses increase with respect to the squared long run correlation r2.
Also, the Bonferroni-based TA-OLS tests are slightly more powerful than the IVX test when c0

is small, e.g., c0 ∈ {0, 5}. However, Figure S.11 for c0 = 20 indicates that the IVX has a better
power when the long-run correlations are small, e.g., r2 ∈ {0.00, 0.25}. Lastly, we check that the
two Bonferroni-based methods, Bonf-M-TAOLS (ES)and Bonf-M-TAOLS (M-Hansen), have quite
similar power for most cases, but Bonf-M-TAOLS (ES) has some power gain over Bonf-M-TAOLS

(M-Hansen)when c0 = 5 and r2 = 0.75. However, the power advantage of Bonf-M-TAOLS (ES)over
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Bonf-M-TAOLS (M-Hansen) disappears when c0 increases to 20.
All in all, the feasible versions of the modified TA-OLS with the Bonferroni procedures shown

in this paper have advantages over the IVX test when we consider the balance between size and
power. This is because the two Bonferroni-based TA-OLS methods, Bonf-M-TAOLS (ES) and
Bonf-M-TAOLS (M-Hansen), outperforms the IVX test on a wide range of DGPs considered in our
simulations. When the true c0 is small, Bonf-M-TAOLS (ES) is less conservative than Bonf-M-TAOLS

(M-Hansen) and can be more powerful. However, Bonf-M-TAOLS (ES) can be size distorted when
c0 largely deviates from zero. On the other hand, Bonf-M-TAOLS (M-Hansen) shows stable perfor-
mances with correct sizes and favorable power for broad ranges of c0.

7 Conclusion

In this paper, we develop a theory that adopts a local-to-unity approximations to a triangular
cointegrated system. Our analysis is carried out on the domain of low frequencies by transforming
data from the original time domain. We show that the unmodified TA-OLS in Hwang and Sun
(2017) possesses an asymptotic bias term in the limiting distribution. As a result, the unmodified
TA-OLS suffers from severe size distortions, especially, when the degree of long run endogeneity
grows, or the cointegration regressor deviates from the exact unit root.

We develop modified TA-OLS test statistics, which yields to convenient t and F inferences for the
cointegrating vector and long run endogeneity parameter. The modified TA-OLS not only adjusts
for the asymptotic bias arising from the local-to-unity regressor but also corrects the uncertainty
of the plugged-in bias correction term. When the local-to-unity parameter is unknown, we also
provide feasible versions of modified TA-OLS, which considers a Bonferroni-based inferences. The
Bonferroni-based methods require confidence intervals for the local-to-unity parameter. We note
that implementation of Elliott and Stock’s (2001) confidence interval can be subjective to uniformity
critique in Phillips (2014b) when the true local-to-unity parameter is large. To overcome this issue,
we propose a modification of Hansen’s (2001) confidence interval. The corresponding Bonferroni-
based method overcomes the uniformity critique and shows correct sizes and appealing power in
finite samples.

Our numerical results also show that the size distortions of the existing IVX test can be am-
plified when the local-to-unity parameter (c0) and the degree of the long run endogeneity (r2) are
important. Also, we find that the proposed Bonferroni-based TA-OLS tests have favorable finite
sample properties compared to the IVX test when we consider the balance between size and power.
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The first part of this supplementary appendix (Section S.1) provides proofs of the main results.
The following section discusses non-linear and joint testings using the modified TA-OLS. Section
S.3 presents detailed procedures for calculating the modified Hansen (1999) and Elliott and Stock’s
(2001) confidence intervals in our Bonferroni-based inferences. Section S.4 provides conditions that
simply the computation of our Bonferroni intervals. Lastly, Section S.5 presents numerical results
in Tables and Figures, which are referenced in the main text of the paper.

S.1 Proofs of Main Results

Proof of Proposition 1. We begin by showing the asymptotic equivalence between 1
T 3/2

∑T
t=1 xt−1φi(

t
T )

and the transformed regressor Wx/T in (25), that is,

1

T 3/2

T∑
t=1

xt−1φi

(
t

T

)
=

1

T 3/2

T∑
t=1

xtφi

(
t

T

)
+Op

(
1

T

)
.

The left side of the equation is

1

T

T∑
t=1

xt−1√
T
φi

(
t

T

)
=

1

T

T−1∑
s=0

xs√
T
φi

( s
T

)
+

1

T

T∑
t=1

xt−1√
T

[
φi

(
t

T

)
− φi

(
t− 1

T

)]
. (B.1)

By mean value theorem,

φi

(
t

T

)
= φi

(
t− 1

T

)
+ φ′(r∗t )

(
1

T

)
for some r∗t ∈

[
t− 1

T
,
t

T

]
,

and Assumption 2 yields

φi

(
t

T

)
− φi

(
t− 1

T

)
=
φ′(r∗t )

T
≤ M

T

for some M > 0 uniformly over t. Therefore, the second term in (B.1) satisfies

1

T

T∑
t=1

xt−1√
T

[
φi

(
t

T

)
− φi

(
t− 1

T

)]
≤
(
M

T

)[
1

T

T−1∑
t=0

xt√
T

]
= Op

(
1

T

)
.
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For the first term in (B.1),

1

T

T−1∑
s=0

xs√
T
φi

( s
T

)
=

1

T

T∑
s=1

xs√
T
φi

( s
T

)
+

x0

T 3/2
φi(0)− xT

T 3/2
φi(1) (B.2)

=
1

T

T∑
s=1

xs√
T
φi

( s
T

)
+Op

(
1

T

)
,

where the second equality follows from x0 = Op(1) and the equation (23). With this result and the
weak convergences in (10), (11), and (12), we get

Υ−1
T WX = (Wx/T,W∆x)⇒ SX = (Sx,S∆x) , (B.3)

W̃x ⇒ S0·x + c0 · Sxδ0,

where W̃x = (W̃x,1, ..., W̃x,K)′.Then, by the definition of γ̂ and ΥT , we have

ΥT (γ̂ − γ0) = (Υ−1
T W′XWXΥ−1

T )−1Υ−1
T W′XW̃0·x

⇒
(
S′XSX

)−1 S′X [S0·x + c0 · Sxδ0]

=
(
S′XSX

)−1 S′XS0·x + c0 ·
(
S′XSX

)−1 S′XSxδ0.

Since {S0·x,i}Ki=1 is i.i.d normal random variables with variance σ2
0·x and is independent with SX =

(Sx, S∆x), the latter component can be expressed by a mixture of normal distribution

MN(0, σ2
0·x
(
S′XSX

)−1
).

The second component can be written more explicitly as

c0 ·
(
S′XSX

)−1 S′XSxδ0 = c0 ·
(

S′xSx S′xS∆x

S′∆xSx S′∆xS∆x

)−1( S′xSxδ0

S∆xSxδ0

)
=

(
c0 · (S′xMS∆x

Sx)−1 S′xMS∆x
Sxδ0

c0 · (S′∆xMSxS∆x)−1 S′∆xMSxSxδ0

)
=

(
c0δ0

0

)
,

which finishes the proof.

Proof of Proposition 2. We prove the result for the F statistic only, as the result for t statistic
can be proved in a similar manner. Note that

σ̂2
0·x =

1

K

K∑
i=1

ω̂2
0·x,i =

1

K
W′Y

[
IK −WX(W′XWX)−1W′X

]
WY (B.4)

=
1

K
W̃′0·x

[
IK −WX(W′XWX)−1W′X

]
W̃0·x

⇒ 1

K
[S0·x + c0 · Sxδ0]′

[
IK − SX(S′XSX)−1S′X

]
[S0·x + c0 · Sxδ0] .

Since PSX = SX(S′XSX)−1S′X is a projection matrix onto a space generated by [Sx,S∆x] , it is easy
to check [

IK − SX(S′XSX)−1S′X
]

[c0 · Sxδ0] = 0.
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Therefore, the weak convergence limit of the estimator σ̂2
0·x simplifies to

σ̂2
0·x ⇒

1

K
S′0·xMSXS0·x

d
=
σ2

0·x
K

χ2
K−2d,

where MSX := IK − SX(S′XSX)−1S′X . Combining this result with

T (Rββ̂ − rβ)⇒ Rβ
[
S′xMS∆x

Sx
]−1 S′xMS∆x

S0·x + c0Rβδ0

and
Rβ
[
(W′x/T )M∆x(W′x/T )

]−1
R′β ⇒ Rβ

[
S′xMS∆x

Sx
]−1

R′β,

we have that

F (β̂)⇒ K

pβ

∥∥∥∥ Z
σ0·x

+ c0 ·
[
Rβ [S′xMS∆x

Sx]−1R′β

]−1/2
·
[
Rβδ0
σ0·x

]∥∥∥∥2

[S′0·xMSX S0·x
σ2

0·X

] , (B.5)

where

Z =
[
Rβ
[
S′xMS∆x

Sx
]−1

Rβ

]−1/2
Rβ
[
S′xMS∆x

Sx
]−1 S′xMS∆x

S0·x ∼ N(0, σ2
0·x · IK).

Conditional on SX = (Sx,S∆x), MSXS0·x and SxMS∆x
S0·x are independent, as both MSXS0·x and

S′xMS∆x
S0·x are normal and its conditional covariance is

cov
(
MSXS0·x, S′xMS∆x

S0·x
)

= σ2
0·x
[
IK − SX(S′XSX)−1S′X

]
MS∆x

Sx = 0.

This implies that Z is independent of S′0·xMSXS0·x conditional on SX = (Sx, S∆x), and hence

K

pβ

∥∥∥∥ Z
σ0·x

+ c0 ·
[
Rβ [S′xMS∆x

Sx]−1R′β

]−1/2
·
[
Rβδ0
σ0·x

]∥∥∥∥2

[S′0·xMSX S0·x
σ2

0·X

]
d
=

K

K − 2d
Fpβ ,K−2d

(
‖θ‖2

)
,

where

θ =
[
Rβ
[
S′xMS∆x

Sx
]−1

R′β

]−1/2
·
[
c0Rβδ0

σ0·x

]
.

Similarly, with Z =
[
Rδ [S′∆xMSXS∆x]−1Rδ

]−1/2
Rδ [S′∆xMSXS∆x]−1 S′∆xMSXS0·x, we obtain

F (δ̂)⇒ K

pδ

∥∥∥ Z
σ0·x

∥∥∥2[S′0·xMSX S0·x
σ2

0·X

] d
=

K

K − 2d
Fpδ,K−2d.

Proof of Theorem 3. We prove the result for the Wald statistics only, as the same proof goes
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through for the t statistics with obvious modifications. From (30) and (31), we have

T

(
Rβ

[
β̂ − c0 ·

δ̂

T

]
− rβ

)
⇒ Γc0(S′XSX)−1S′XS0·x,

Γc0(Υ−1
T W′XWXΥ−1

T )−1Γ′c0 ⇒ Γc0(S′XSX)−1Γ′c0 .

Combining these results with (B.4), we have

F (β̂; c0) =
T 2

σ̂2
0·x

(Rβ[β̂ − c0 · δ̂/T ]− rβ)′
[
Γc0(Υ−1

T W′XWXΥ−1
T )−1Γ′c0

]−1

× (Rβ[β̂ − c0 · δ̂/T ]− rβ)/p.

⇒
[
K

pβ

] [
Γc0(S′XSX)−1S′XS0·x

]′ [
Γc0(S′XSX)−1Γ′c0

]−1 [
Γc0(S′XSX)−1S′XS0·x

]
S′0·xMSXS0·x

Using a similar argument in the proof of Proposition 2, the conditional limit of Wald statistics
F (β̂; c0) can be expressed as[

K

pβ

] [
Γc0(S′XSX)−1S′XS0·x

]′ [
Γc0(S′XSX)−1Γ′c0

]−1 [
Γc0(S′XSX)−1S′XS0·x

]
S′0·xMSXS0·x

d
=
K

p

χ2
pβ

χ2
K−2d

, χ2
p ⊥ χ2

K−2d

which is invariant to the conditioning variable SX . Thus, it is also the unconditional distribution
which proves

F (β̂; c0)⇒ K

K − 2d
Fp,K−2d.

S.2 Discussions on testing for β0 and δ0

In this section, we apply the bias-corrected inference of modified TA-OLS to test simultaneous
restrictions on β0 and δ0 and discuss a non-linear testing hypothesis.1

For Rβ ∈ Rpβ×d and Rδ ∈ Rpδ×d such that pβ, pδ ≤ d, we first consider the following form of
hypothesis:

Hγ
0 : Rββ0 = rβ and Rδδ0 = rδ. (B.6)

We reformulate the matrix Γc0 as

Γc0 =

(
Rβ −c0Rβ
0 Rδ

)
, (B.7)

1We thank an anonymous referee who pointed out this issue.
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and apply Proposition 1 to obtain that

Γc0ΥT [γ̂ − γ0] =

(
Rβ −c0Rβ
0 Rδ

)(
T (β̂ − β0)

δ̂ − δ0

)
⇒
(
Rβ −c0Rβ
0 Rδ

)[
c0δ0

0

]
+MN(0, σ2

0·xΓc0(S′XSX)−1Γ′c0),

where ΥT is defined in (26). This implies that

ΥT

{(
Rβ

(
β̂ − c0δ̂

T

)
Rδ δ̂

)
−
(
rβ
rδ

)}
⇒MN(0, σ2

0·xΓc0(S′XSX)−1Γ′c0),

which leads us to formulate the modified Wald test for (B.6) as below:

F (γ̂; c0) =
ΥT

σ̂2
0·x

[(
Rβ

(
β̂ − c0δ̂

T

)
Rδ δ̂

)
−
(
rβ
rδ

)]′ [
Γc0(Υ−1

T W′XWXΥ−1
T )−1Γ′c0

]−1
(B.8)

×

[(
Rβ

(
β̂ − c0δ̂

T

)
Rδ δ̂

)
−
(
rβ
rδ

)]
Υ′T /p

⇒ K

K − 2d
· Fp,K−2d

for p = pβ + pδ. Note that we scale F (γ̂; c0) by the matrix ΥT , which reflects the different rates

of convergence between β̂ and δ̂. The result also implies that the joint testing is possible, but the
accuracy of testing the restriction rγ = (r′β, r

′
δ)
′ will be different from testing the single restriction

Rββ0 = rβ. This is mainly because δ̂ is Op(1) and β̂ = Op(1/T ) under our fixed-K asymptotics.
This means that the component, rβ, is more accurately tested than the component rδ in the joint
inference.

However, the differing rates of convergences between β̂ and δ̂ can make the joint testing prob-
lem very difficult in other types of hypothesis. For example, consider the following simultaneous
restrictions on β0 and δ0:

Hγ
0 : Rββ0 +Rδδ0 = rβ + rδ. (B.9)

In analogous to (B.7), we choose the matrix

Γc0 =
(
Ipβ Ipδ

)( Rβ −c0Rβ
0 Rδ

)
,

which yields the following joint convergence result:

Γc0ΥT [γ̂ − γ0]⇒ c0Rβδ0 +MN(0, σ2
0·xΓc0(S′XSX)−1Γ′c0).

Thus, with the plugged-in estimator of β̂ − c0(δ̂/T ) and δ̂, we have that(
TRβ(β̂ − c0δ̂/T ) +Rδ δ̂

)
− (Trβ + rδ)⇒MN(0, σ2

0·xMN(0, σ2
0·xΓc0(S′XSX)−1Γ′c0).

Since the second term on left-hand side, Trβ + rδ, is different from rβ + rδ, the bias-corrected
inference for testing (B.9) is not possible, as long as rβ � rδ, i.e., rβ/rδ and rδ/rβ are O(1). This

5



is because the hypothesis in (B.6) consists of only one testing restriction by combining two sets of
parameters, rβ and rδ, which are estimated with different orders of uncertainties under our fixed-
K asymptotics. This contrasts to the joint hypothesis in (B.6), which enables us to separate the
different orders of uncertainty in β̂ and δ̂ and make a valid joint inference via (B.9).

For the non-linear hypothesis, we consider Hβ
0 : gβ(β0) = rβ, where the non-linear function

gβ(·) : Rd → Rp is continuously differentiable at β0. Then, one can apply the Delta method to
convert the non-linear restriction into the linear one in an asymptotic sense. To be more specific,
we use a Taylor expansion and obtain that

T (gβ(β̂)− rβ) = T (gβ(β̂)− gβ(β0))

=
∂gβ(β∗T )

∂β′
T (β̂ − β0),

where β∗T lies between β̂ and β0. Since β̂
p→ β0, and ∂gβ(β∗T )/∂β′

p→ ∂gβ(β0)/∂β′, we can apply the
Delta method to obtain that

T (gβ(β̂)− rβ)⇒
(
∂gβ(β0)

∂β′

)[
S′xMS∆x

Sx
]−1 S′xMS∆x

S0·x + c

(
∂gβ(β0)

∂β′

)
δ0.

Therefore, by simply replacing the matrix Rβ with ∂gβ(β0)/∂β′ ∈ Rp×d, we can extend Theorem
3 to test nonlinear restrictions on β0. On the other hand, we cannot apply the Delta method to a
non-linear testing for δ0, i.e., Hδ

0 : gδ(δ0) = rδ. This is because ∂gδ(δ
∗
T )/∂δ′

p→ ∂gδ(δ0)/∂δ′ does not

hold. Instead, we have that ∂gδ(δ
∗
T )/∂δ′ = ∂gδ(δ̂)/∂δ

′ + op(1), and

∂gδ(δ̂)

∂δ′
⇒
∂gδ(δ0 + [S′∆xMSXS∆x]−1 S′∆xMSXS0·x)

∂δ′
(B.10)

by continuous mapping theorem. Other than relying on the Delta method, one can make use of a
proper simulation-based or resampling method and directly compute a critical value from the non-
standard distribution implied by (B.10). Still, it is necessary to investigate further its feasibility,
which deals with the unknown nuisance parameters, σ2

0·x and Ωxx, in the right-hand side of (B.10).
This remains an interesting open question, and we leave for future research.

S.3 Construction of Confidence Interval for c0 under Dependent
Errors

We consider the following autoregressive model:

xt = µx + ρxt−1 + uxt, (B.11)

where xt is a scalar time series, |ρ| ≤ 1, and µx = 0. The serial dependence of uxt has important roles
when we construct valid asymptotic confidence sets for ρ. To be specific, Elliott and Stock’s (2001)
approach requires a consistent estimation of the LRV, Ωxx, in their test statistic, PT (0, c̄). Also,
as shown in our numerical results in Tables S.1 and S.2, the confidence interval (CI) constructed
by grid bootstrap approach in Hansen (1999) is invalid when we ignore the serial dependence of
uxt. To address these issues, we first approximate the unknown dependence structure of uxt by the
following AR(pT ) process:

uxt = b1uxt−1 + . . .+ bpT uxt−pT + et, (B.12)
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where et
i.i.d∼ (0, σ2

e). Under suitable regular conditions, one can translate the true dependence
(covariance) structure of weakly stationary process to an infinite order autoregressive (AR) process,
e.g., den Haan and Levin (1998). Thus, we can justify the approximated process in (B.12) by
assuming that the selected lag order grows to infinity as T → ∞ such that p3

T /T = o(1) (Berk,
1974).

Using (B.12), we can reformulate (B.11) by the following (approximated) augmented Dickey–
Fuller (ADF) equation:

∆xt = τ + (ϕ− 1)xt−1 +

pT∑
i=1

πi∆xt−i + et, (B.13)

where τ = µx(1 −
∑pT

i=1 bi), ϕ := 1 + (ρ − 1) (1−
∑pT

i=1 bi) , and πi = bi − (1 − ρ)
∑p∗T

j=i bj for
i = 1, . . . , pT . Regarding the choice of pT , one can use Bayesian information criterion (BIC) to the
ADF equation in (B.13), e.g. Campbell and Yogo (2006). However, Ng and Perron (1995) and
Lopez (1997) point out that selection rules such as BIC and Akaike information criterion (AIC)
tend to select values of pT that are generally too small for inferring the autoregressive coefficient
(ϕ − 1) in (B.13) with persistent data. To resolve this issue, Ng and Perron (2001) propose a
modified AIC (MAIC) selection rule, which takes account of the bias in the sum of the regression
coefficient for the persistent regressor xt−1. The MAIC rule is implemented as below:

p∗T = arg min
k

{
log(σ̂2

k) +
2(τT (k) + k)

T − kmax

}
,

where

σ̂2
k =

∑T
t=kmax+1 ê

2
tk

(T − kmax)
and τT (k) =

λ̂2

σ̂2
k

T∑
t=kmax+1

xt−1.

λ̂ is the estimated value for the coefficient (ϕ − 1), and êtk’s are residuals of the following ADF
regressions:

∆xt = τ + (ϕ− 1)xt−1 +
k∑
i=1

ψi∆xt−i + etk.

Modified grid bootstrap method in Hansen (1999)

Recall that, given p∗T , we can re-formulate (B.11) by the following (approximated) augmented
Dickey–Fuller (ADF) equation:

xt = τ + ϕxt−1 +

p∗T∑
i=1

πi∆xt−i + et, (B.14)

Let ϕ̂ denote the estimate of ϕ from OLS estimation of (B.14). Let {êt} be the OLS residuals in
(B.14) and s.e(ϕ̂) be the least square standard error for ϕ̂. The corresponding t-statistic, under ϕ,
is then defined by t(ϕ̂;ϕ) = (ϕ̂ − ϕ)/s.e(ϕ̂). Also, given ϕ, we also compute τ̂(ϕ) and π̂i(ϕ) for
i = 1, . . . , p, which is the OLS estimates in the following restricted regression model:

xt − ϕxt−1 = τ +

p∗T∑
i=1

πi∆xt−i + et. (B.15)
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Below we describe an algorithm to compute the CI for the coefficient ϕ with 100 · (1−η)% coverage
rate using the grid-bootstrap approach in Hansen (1999).

Step 1: Given ϕ in the grid, generate bootstrapped residuals {e∗t }Tt=1. According to Mikusheva (2007),
there are at least two ways to perform the nonparametric grid bootstrap. The first method is
drawn from the empirical distribution of the residuals {êt}Tt=1 from (B.14). The second one
is to draw from the centered residuals, {êt(ϕ)− T−1

∑T
t=1 êt(ϕ)}Tt=1, where êt(ϕ) is obtained

by OLS regression in (B.15), i.e.,

êt(ϕ) := xt − ϕxt−1 − τ̂(ϕ)−
p∗T∑
i=1

π̂i(ϕ)∆xt−i.

Our Monte Carlo analysis only reports the results using the first method, as the second one
yields very similar outputs.

Step 2: Using {e∗t }Tt=1, generate the bootstrapped samples as below:

x∗t = τ̂(ϕ) + θx∗t−1 +

p∗T∑
i=1

π̂i(ϕ)∆x∗t−i + e∗t

where (x∗0, x
∗
−1, . . . , x

∗
−p∗T

) is set to be zero vector, or (x0, x−1, . . . , x−p∗T ).

Step 3: Using the bootstrapped samples, compute the bootstrapped t-statistic under θ:

t∗(ϕ̂∗;ϕ) =
ϕ̂∗ − ϕ
s.e(ϕ̂∗)

,

where ϕ̂∗ is from the OLS estimation of (B.15) using bootstrapped samples {x∗t }Tt=1, and
s.e(ϕ̂∗) is corresponding OLS standard error estimated from the bootstrapped samples. Given
ϕ in the grid chosen in the Step 1, repeat Steps 1–3, B-times for some large number of B,
say B = 200.

Step 4: Based on the B-number of the bootstrapped t-statistic, t∗(ϕ̂∗;ϕ), compute the η/2 and the
(1− η/2) quantiles of t∗(ϕ), which are denoted q∗T (η/2, ϕ) and q∗T (1− η/2, ϕ), respectively.

Step 5: Repeat Steps 1–4 for different grid points of ϕ, and draw the quantile curves of q∗T (η/2, ϕ)
and q∗T (1− η/2, ϕ) with respect to ϕ.

Step 6: Using the OLS estimate, ϕ̂, based on the original sample {xt}Tt=1, construct the CI for the
parameter ϕ as a set of values for which the corresponding hypothesis is not reject at 100η%,
i.e., .

ST,ϕ(η) = {ϕ : q∗T (η/2, ϕ) ≤ t(ϕ̂;ϕ) ≤ q∗T (1− η/2, ϕ)} .

Step 7: After we construct the uniform confidence set of θ, we transform it to the CI for c0 as below:

ST (η) =

{
c = T (1− ρ) : ρ = 1 +

(
ϕ− 1

1−
∑p∗T

i=1 b̂i

)
such that ϕ ∈ ST,ϕ(η)

}
,

where b̂i’s are estimated by the following OLS regression

ûxt = b1ûxt−1 + . . .+ bp∗T ûxt−p
∗
T

+ et
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with ûxt = (xt − T−1
∑T

t=1 xt)− ρ̂ols(xt−1 − T−1
∑T

t=1 xt).

Inversion of efficient tests in Elliott and Stock (2001)

Considering (B.11) with ρ = 1−c0/T , a confidence interval for the local-to-unity parameter c0, pro-
posed by Elliott and Stock (2001), builds on the idea of inverting asymptotically optimal Neyman-
Pearson tests in the Gaussian autoregression model. Below we describe a procedure to compute
the CI of Elliott and Stock (2001) for c0 with 100(1− η)% coverage rate.

Step 1: Obtain a heteroskedasticity autocorrelation robust estimator of Ωxx, which is based on the
approximated process in (B.14):

Ω̂xx =
σ̂2
e(

1−
∑p∗T

i=1 b̂i

)2 ,

where σ̂2
e = T−1

∑T
t=1 êt and êt = ûxt − (b̂1ûxt−1 + . . . + b̂pûxt−p). Note that one can also

estimate Ω̂xx by the nonparametric kernel type HAC estimation, e.g., Newey and West (1987),
using an optimal bandwidth rule suggested by Andrews (1991).

Step 2: Following Elliott and Stock (2001, pp161), we choose c̄ = 13.5 with ρ̄ = 1− c̄/T, and construct
the following test statistics:

PT (0, c̄) :=
1

Ω̂xx

[
T∑
t=1

(uGLS,t(ρ̄))2 − ρ̄
T∑
t=1

(uGLS,t(1))2

]
,

where uGLS,t(ρ) = xt(ρ)− zt(ρ)′β(ρ) for t = 1, ..., T, and

β(ρ) = (Z ′(ρ)Z(ρ))−1Z ′(ρ)X(ρ);

Z(ρ) =


z1(ρ)
z2(ρ)

...
zT (ρ)

 =


1

1− ρ
...

1− ρ

 and X(ρ) =


x1(ρ)
x2(ρ)

...
xT (ρ)

 =


x1

x2 − ρx1
...

xT − ρxT−1

 .

Step 3: Let W (·) be a standard Wiener process, and Jc(·) be OU-process Jc(r) =
∫ r

0 exp(−c(r −
s))dW (s). Given c in the grid, we obtain the following two quantities:

p(c, ε1) : ε1 quantile of P (c, c̄);

p(c, 1− ε2) : 1− ε2 quantile of P (c, c̄),

where η = ε1 + ε2, and

P (c, c̄) = c̄2

∫ 1

0
(Jc(s))

2 ds+ c̄J2
c (1).

For η = 0.10, we choose ε1 = 0.06 and ε2 = 0.04, which are suggested in Elliott and Stock
(2001). To simulate p(c, ε1) and p(c, 1− ε2), we draw the random variable, P̂B1(c, c̄), with B2

9



times:

P̂B1(c, c̄) :=
c̄2

B1

B1∑
b=1

(
Ĵc

(
b

B1

))2

+ c̄
(
Ĵc(1)

)2
,

Ĵc

(
s

B1

)
:=

1√
B1

s∑
b=1

exp

(
c

(
s− b
B1

))
eb,

where eb
i.i.d∼ N(0, 1), and B1 and B2 are large numbers, say, B1 = 500 and B2 = 5000. Then,

p(c, ε1) and p(c, 1− ε2) can be obtained by ε1 and 1− ε2 quantiles of P̂B1(c, c̄), respectively.

Step 4: Construct the CI for parameter c, ST (η), which is a set of values for which the corresponding
hypothesis, H0 : ρ = 1− c/T, is not rejected at 100η%, i.e.,

ST (η) = {c : p(c, ε1) ≤ PT (0, c̄) ≤ p(c, 1− ε2)} .

Note that the above definition allows the possibility of disconnected sets. In this case, we use
a conservative confidence interval which can be defined as the convex hull of ST (η).

S.4 Computation of Bonferroni Intervals

Recall that the upper and lower bounds of Bonferroni CI in (40) are maximum and minimum of

r
1−α/2
β,l (c) = Rββ̂ −

1

T

(
cRβ δ̂ +

√
σ̂2

0·xD(c) ·
√

K

K − 2d
· t1−α/2K−2d

)
, (B.16)

and

r
1−α/2
β,h (c) = Rββ̂ −

1

T

(
cRβ δ̂ −

√
σ̂2

0·xD(c) ·
√

K

K − 2d
· t1−α/2K−2d

)
, (B.17)

respectively, where

D(c) = Γc0
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c0

= Rβ

[
Λ1(c)

(
W′xM∆xWx

)−1
+ Λ2(c)

(
W′∆xMxW∆x

)−1
]
R′β,

and

Λ1(c) = T 2(Id + cT−1
[
W′∆xW∆x

]−1 W′∆xWx),

Λ2(c) = c2Id + cT
[
W′xWx

]−1 W′xW∆x.

Let c and c denote the minimum and maximum values of ST (η), respectively. Below we characterize
conditions that guarantee that r1−α

R,l (c) (r1−α
R,h (c)) is monotone in c.

i) When Rβ δ̂ ≥ 0, (W′∆xW
−1
∆x)W′∆xWx ≥ 0, and [W′xWx]−1 W′xW∆x ≥ 0 :

Both cRβ δ̂ and
√
D(c) in (B.16) are increasing in c for c ≥ 0, so r

1−α/2
β,l (c) is decreasing in

10



c ≥ 0. This leads us to compute the lower bound of the Bonferroni CI as follows:

min
c∈ST (η)

r
1−α/2
β,l (c) = r

1−α/2
β,l (c) .

ii) When Rβ δ̂ ≤ 0, (W′∆xW
−1
∆x)W′∆xWx ≥ 0, and [W′xWx]−1 W′xW∆x ≥ 0 :

Both cRβ δ̂ and −
√
D(c) in (B.17) are decreasing in c for c ≥ 0, so r

1−α/2
β,h (c) is increasing in

c ≥ 0. This leads us to compute the upper bound of the Bonferroni CI as follows:

max
c∈ST (η)

r
1−α/2
β,h (c) = r

1−α/2
β,h (c) .
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S.5 Tables and Figures

Table S.1: Empirical coverage rates and averaged estimates of 90% CIs for autoregressive pa-
rameter ρ ∈ {0.975, 0.950, 0.90} using various methods with T = 200, AR(1) error, and ψ ∈
{0.00, 0.25, 0.50, 0.75}

AR(1) process for autoregressive error:
ρT = 0.975 with c0 = 5 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.898 [0.930, 0.997] 0.892 [0.926, 0.997] 0.896 [0.932, 0.994]
0.25 0.777 [0.957, 1.000] 0.891 [0.928, 0.997] 0.906 [0.934, 0.995]
0.50 0.413 [0.977, 1.000] 0.891 [0.929, 0.997] 0.897 [0.933, 0.994]
0.75 0.066 [0.991, 1.000] 0.883 [0.931, 0.997] 0.895 [0.934, 0.994]

ρT = 0.950 with c0 = 10 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.896 [0.899, 0.990] 0.878 [0.895, 0.990] 0.855 [0.904, 0.985]
0.25 0.674 [0.937, 0.999] 0.875 [0.898, 0.990] 0.852 [0.907, 0.987]
0.50 0.191 [0.965, 1.000] 0.866 [0.902, 0.991] 0.852 [0.907, 0.986]
0.75 0.004 [0.986, 1.000] 0.841 [0.907, 0.992] 0.837 [0.909, 0.987]

ρT = 0.90 with c0 = 20 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.896 [0.839, 0.957] 0.856 [0.832, 0.958] 0.747 [0.854, 0.961]
0.25 0.515 [0.896, 0.992] 0.846 [0.842, 0.962] 0.727 [0.861, 0.966]
0.50 0.041 [0.939, 1.000] 0.817 [0.852, 0.967] 0.707 [0.866, 0.967]
0.75 0.000 [0.974, 1.000] 0.720 [0.869, 0.977] 0.651 [0.875, 0.972]
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Table S.2: Empirical coverage rates and averaged estimates of 90% CIs for autoregressive pa-
rameter ρ ∈ {0.975, 0.950, 0.90} using various methods with T = 200, MA(1) error, and ψ ∈
{0.00, 0.25, 0.50, 0.75}

MA(1) process for autoregressive error:
ρT = 0.975 with c0 = 5 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.898 [0.930, 0.997] 0.892 [0.926, 0.997] 0.896 [0.932, 0.994]
0.25 0.832 [0.952, 1.000] 0.889 [0.926, 0.996] 0.903 [0.932, 0.994]
0.50 0.734 [0.961, 1.000] 0.886 [0.929, 0.997] 0.895 [0.936, 0.995]
0.75 0.678 [0.964, 1.000] 0.880 [0.934, 0.998] 0.904 [0.941, 0.997]

ρT = 0.95 with c0 = 10 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.896 [0.899, 0.990] 0.878 [0.895, 0.990] 0.855 [0.904, 0.985]
0.25 0.762 [0.929, 0.998] 0.871 [0.895, 0.989] 0.850 [0.905, 0.986]
0.50 0.600 [0.942, 1.000] 0.864 [0.900, 0.991] 0.837 [0.911, 0.988]
0.75 0.519 [0.947, 1.000] 0.839 [0.908, 0.994] 0.797 [0.921, 0.992]

ρT = 0.90 with c0 = 20 and T = 200

Hansen (1999) Modified Hansen (1999) Elliott and Stock (2001)

ψ Coverage Averaged CI Coverage Averaged CI Coverage Averaged CI

0.00 0.896 [0.839, 0.957] 0.856 [0.832, 0.958] 0.747 [0.854, 0.961]
0.25 0.655 [0.885, 0.987] 0.842 [0.836, 0.958] 0.736 [0.857, 0.964]
0.50 0.395 [0.905, 0.995] 0.813 [0.847, 0.966] 0.669 [0.874, 0.971]
0.75 0.285 [0.913, 0.997] 0.757 [0.861, 0.976] 0.531 [0.891, 0.980]
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Table S.3: Empirical size of 5% various TA-OLS methods with T = 200, K = 8 and AR(1) error
with ψ = 0.75 with a single regressor.

H0 : β1 = 1 with c0 = 0, ψ = 0.75, and K = 8

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.055 0.055 0.228 0.036 0.056 0.074
0.25 0.055 0.055 0.226 0.042 0.058 0.052
0.50 0.054 0.054 0.226 0.042 0.058 0.031
0.75 0.054 0.054 0.236 0.044 0.058 0.014

H0 : β1 = 1 with c0 = 5, ψ = 0.75, and K = 8

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.057 0.055 0.148 0.026 0.027 0.094
0.25 0.092 0.055 0.162 0.020 0.022 0.077
0.50 0.172 0.056 0.200 0.016 0.017 0.051
0.75 0.370 0.055 0.300 0.014 0.013 0.029

H0 : β1 = 1 with c0 = 10, ψ = 0.75, and K = 8

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.057 0.054 0.085 0.022 0.027 0.101
0.25 0.143 0.055 0.135 0.020 0.025 0.104
0.50 0.301 0.056 0.234 0.019 0.021 0.105
0.75 0.637 0.054 0.454 0.021 0.022 0.106

H0 : β1 = 1 with c0 = 20, ψ = 0.75, and K = 8

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.057 0.050 0.046 0.023 0.029 0.104
0.25 0.202 0.052 0.136 0.028 0.032 0.179
0.50 0.458 0.053 0.297 0.032 0.037 0.280
0.75 0.825 0.056 0.592 0.045 0.061 0.409
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Table S.4: Empirical size of 5% various TA-OLS methods with T = 200, K = 16 and AR(1) error
with ψ = 0.50 with a single regressor.

H0 : β1 = 1 with c0 = 0, ψ = 0.50, and K = 16

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.054 0.054 0.134 0.040 0.049 0.063
0.25 0.053 0.053 0.129 0.045 0.049 0.045
0.50 0.053 0.053 0.126 0.043 0.049 0.029
0.75 0.055 0.055 0.130 0.048 0.050 0.016

H0 : β1 = 1 with c0 = 5, ψ = 0.50, and K = 16

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.054 0.055 0.064 0.028 0.031 0.085
0.25 0.101 0.051 0.064 0.016 0.018 0.066
0.50 0.209 0.052 0.086 0.014 0.013 0.048
0.75 0.467 0.052 0.149 0.017 0.014 0.033

H0 : β1 = 1 with c0 = 10, ψ = 0.50, and K = 16

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.055 0.053 0.040 0.024 0.028 0.093
0.25 0.173 0.050 0.069 0.017 0.019 0.083
0.50 0.406 0.051 0.127 0.015 0.016 0.080
0.75 0.788 0.053 0.260 0.018 0.022 0.075

H0 : β1 = 1 with c0 = 20, ψ = 0.50, and K = 16

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.056 0.050 0.032 0.025 0.028 0.104
0.25 0.296 0.049 0.091 0.020 0.029 0.142
0.50 0.656 0.051 0.202 0.022 0.038 0.191
0.75 0.956 0.058 0.420 0.032 0.072 0.247
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Table S.5: Empirical size of 5% various TA-OLS methods with T = 200, K = 24 and AR(1) error
with ψ = 0.25 with a single regressor.

H0 : β1 = 1 with c0 = 0, ψ = 0.25, and K = 24

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.052 0.052 0.075 0.043 0.047 0.052
0.25 0.053 0.053 0.072 0.046 0.046 0.038
0.50 0.052 0.052 0.071 0.042 0.045 0.030
0.75 0.051 0.051 0.071 0.049 0.046 0.019

H0 : β1 = 1 with c0 = 5, ψ = 0.25, and K = 24

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.053 0.053 0.040 0.028 0.030 0.074
0.25 0.100 0.049 0.028 0.015 0.017 0.056
0.50 0.217 0.050 0.030 0.012 0.014 0.046
0.75 0.493 0.052 0.050 0.018 0.015 0.035

H0 : β1 = 1 with c0 = 10, ψ = 0.25, and K = 24

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.054 0.051 0.032 0.025 0.028 0.081
0.25 0.183 0.050 0.029 0.014 0.018 0.073
0.50 0.435 0.052 0.041 0.012 0.016 0.072
0.75 0.828 0.054 0.075 0.020 0.022 0.066

H0 : β1 = 1 with c0 = 20, ψ = 0.25, and K = 24

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.053 0.049 0.028 0.026 0.029 0.091
0.25 0.333 0.051 0.042 0.018 0.030 0.129
0.50 0.722 0.055 0.065 0.018 0.038 0.170
0.75 0.975 0.065 0.128 0.027 0.071 0.215
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Table S.6: Empirical size of 5% various TA-OLS methods with T = 200, K = 8, 16, 24 and AR(1)
error with ψ ∈ {0.75, 0.50, 0.25} with two regressors.

H0 : β1 = β2 with (c0,1, c0,2) = (20, 0), ψ = 0.75 and K = 8

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.042 0.045 0.177 0.016 0.026 0.100
0.25 0.074 0.049 0.178 0.022 0.035 0.167
0.50 0.092 0.048 0.184 0.023 0.032 0.279
0.75 0.118 0.049 0.198 0.019 0.028 0.494

H0 : β1 = β2 with (c0,1, c0,2) = (20, 0), ψ = 0.50 and K = 16

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.053 0.052 0.086 0.023 0.029 0.098
0.25 0.100 0.049 0.097 0.020 0.029 0.130
0.50 0.154 0.047 0.103 0.019 0.025 0.183
0.75 0.253 0.058 0.132 0.019 0.030 0.313

H0 : β1 = β2 with (c0,1, c0,2) = (20, 0), ψ = 0.25 and K = 24

TAOLS M-TAOLS Bonf-M-TAOLS IVX

r2 (Infeasible) (Hansen) (M-Hansen) (ES)

0 0.047 0.051 0.040 0.024 0.030 0.074
0.25 0.107 0.056 0.044 0.023 0.029 0.096
0.50 0.191 0.052 0.048 0.018 0.025 0.154
0.75 0.311 0.060 0.056 0.015 0.029 0.264
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Figure S.1: Empirical sizes of Bonf M TAOLS (M Hansen)and Bonf M TAOLS (ES) for different
values of tuning parameters η1 and η2 = 0.05 when c0 = 0
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Figure S.2: Empirical sizes of Bonf M TAOLS (M Hansen)and Bonf M TAOLS (ES) for different
values of tuning parameters η1 and η2 = 0.05 when c0 = 5
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Figure S.3: Empirical sizes of Bonf M TAOLS (M Hansen)and Bonf M TAOLS (ES) for different
values of tuning parameters η1 and η2 = 0.05 when c0 = 10
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Figure S.4: Empirical sizes of Bonf M TAOLS (M Hansen)and Bonf M TAOLS (ES) for different
values of tuning parameters η1 and η2 = 0.05 when c0 = 20
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Figure S.5: Empirical sizes of TAOLS, M-TAOLS, Bonf-M-TAOLS (Hansen), Bonf-M-TAOLS

(Hansen), Bonf-M-TAOLS (M-Hansen), Bonf-M-TAOLS (ES), and IVX with a single regressor,
K = 8, and ψ = 0.75
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Figure S.6: Empirical sizes of TAOLS, M-TAOLS, Bonf-M-TAOLS (Hansen), Bonf-M-TAOLS

(Hansen), Bonf-M-TAOLS (M-Hansen), Bonf-M-TAOLS (ES), and IVX with a single regressor,
K = 16, and ψ = 0.50
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Figure S.7: Empirical sizes of TAOLS, M-TAOLS, Bonf-M-TAOLS (Hansen), Bonf-M-TAOLS

(Hansen), Bonf-M-TAOLS (M-Hansen), Bonf-M-TAOLS (ES), and IVX with a single regressor,
K = 24, and ψ = 0.25
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Figure S.8: Finite sample size-adjusted power curves of M-TAOLS (infeasible), Bonf-M-TAOLS

(M-Hansen), Bonf-M-TAOLS (ES), and IVX with K = 16, ψ = 0.50, and c0 = 0
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Figure S.9: Finite sample size-adjusted power curves of M-TAOLS (infeasible), Bonf-M-TAOLS

(M-Hansen), Bonf-M-TAOLS (ES), and IVX with K = 16, ψ = 0.50, and c0 = 5
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Figure S.10: Finite sample size-adjusted power curves of M-TAOLS (infeasible), Bonf-M-TAOLS

(M-Hansen), Bonf-M-TAOLS (ES), and IVX with K = 16, ψ = 0.50, and c0 = 10
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Figure S.11: Finite sample size-adjusted power curves of M-TAOLS (infeasible), Bonf-M-TAOLS

(M-Hansen), Bonf-M-TAOLS (ES), and IVX with K = 16, ψ = 0.50, and c0 = 20
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